Automatic Segmentation and Quantification of Thigh Tissues in CT Images View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Jonas de Carvalho Felinto , Katia Maria Poloni , Paulo Guilherme de Lima Freire , Jessica Bianca Aily , Aline Castilho de Almeida , Maria Gabriela Pedroso , Stela Márcia Mattiello , Ricardo José Ferrari

ABSTRACT

Quantification and distribution of the thigh adipose tissues in CT images have clinical implication in prognostic chronic disease including type 2 diabetes and osteoarthritis. Although there are studies in the literature addressing the quantification of thigh tissues, only a handful of them aims to segment and quantify thigh adipose tissues in CT images automatically. In this study, we propose an automated technique for the segmentation and quantification of muscle, inter- and intra-muscular adipose tissue and subcutaneous adipose tissue in thigh CT images. Our technique combines morphological operations, thresholding, a Gaussian mixture model and the use of an accumulator matrix to map the number of adipose tissue pixels about muscle pixels and thus, to allow an automatic differentiation between SAT and Inter-MAT. Our method was quantitatively assessed using 144 thigh images extracted from 72 leg (left and right) CT scans. All images were manually segmented and the tissues quantified by a specialist with the help of a computer software and used for further comparative analysis. Our technique obtained precision of 0.998 and 0.982, respectively, for the fascia and thigh regions with corresponding recall values of 0.978 and 0.975. Also, the Dice similarity coefficient for both areas was close to 0.98. More... »

PAGES

261-276

References to SciGraph publications

Book

TITLE

Computational Science and Its Applications – ICCSA 2018

ISBN

978-3-319-95161-4
978-3-319-95162-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-95162-1_18

DOI

http://dx.doi.org/10.1007/978-3-319-95162-1_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105289393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Carvalho Felinto", 
        "givenName": "Jonas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poloni", 
        "givenName": "Katia Maria", 
        "id": "sg:person.016120264156.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016120264156.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Lima Freire", 
        "givenName": "Paulo Guilherme", 
        "id": "sg:person.07415212756.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415212756.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aily", 
        "givenName": "Jessica Bianca", 
        "id": "sg:person.011620663547.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620663547.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Almeida", 
        "givenName": "Aline Castilho", 
        "id": "sg:person.01335640663.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335640663.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedroso", 
        "givenName": "Maria Gabriela", 
        "id": "sg:person.014540452347.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540452347.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mattiello", 
        "givenName": "Stela M\u00e1rcia", 
        "id": "sg:person.01006261610.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006261610.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Federal University of S\u00e3o Carlos"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferrari", 
        "givenName": "Ricardo Jos\u00e9", 
        "id": "sg:person.01163437042.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163437042.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/495084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003364368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11265-013-0755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003769627", 
          "https://doi.org/10.1007/s11265-013-0755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11265-013-0755-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003769627", 
          "https://doi.org/10.1007/s11265-013-0755-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2016.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004191723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005554735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2016.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008656841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s1679-45082014rb2912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008749980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.211.1.r99ap15283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010381041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-31865-1_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011627113", 
          "https://doi.org/10.1007/978-3-540-31865-1_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2015.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012935745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015121599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015121599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gerona/60.3.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021887629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/medinform.4923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021999318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025606875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032222360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1532-5415.2002.50217.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033160006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1799-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040642145", 
          "https://doi.org/10.1007/s00330-010-1799-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-010-1799-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040642145", 
          "https://doi.org/10.1007/s00330-010-1799-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.2000.tb06416.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042487964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/diacare.26.2.372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043321550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2522/ptj.20080034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044782969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.23512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045243355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2006.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045466943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2009.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049650375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/309570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050405561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2016.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051966706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2017.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085425001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08925-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091449508", 
          "https://doi.org/10.1038/s41598-017-08925-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-08925-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091449508", 
          "https://doi.org/10.1038/s41598-017-08925-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cbms.2009.5255342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093208079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2014.547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094052689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471221155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Quantification and distribution of the thigh adipose tissues in CT images have clinical implication in prognostic chronic disease including type 2 diabetes and osteoarthritis. Although there are studies in the literature addressing the quantification of thigh tissues, only a handful of them aims to segment and quantify thigh adipose tissues in CT images automatically. In this study, we propose an automated technique for the segmentation and quantification of muscle, inter- and intra-muscular adipose tissue and subcutaneous adipose tissue in thigh CT images. Our technique combines morphological operations, thresholding, a Gaussian mixture model and the use of an accumulator matrix to map the number of adipose tissue pixels about muscle pixels and thus, to allow an automatic differentiation between SAT and Inter-MAT. Our method was quantitatively assessed using 144 thigh images extracted from 72 leg (left and right) CT scans. All images were manually segmented and the tissues quantified by a specialist with the help of a computer software and used for further comparative analysis. Our technique obtained precision of 0.998 and 0.982, respectively, for the fascia and thigh regions with corresponding recall values of 0.978 and 0.975. Also, the Dice similarity coefficient for both areas was close to 0.98.", 
    "editor": [
      {
        "familyName": "Gervasi", 
        "givenName": "Osvaldo", 
        "type": "Person"
      }, 
      {
        "familyName": "Murgante", 
        "givenName": "Beniamino", 
        "type": "Person"
      }, 
      {
        "familyName": "Misra", 
        "givenName": "Sanjay", 
        "type": "Person"
      }, 
      {
        "familyName": "Stankova", 
        "givenName": "Elena", 
        "type": "Person"
      }, 
      {
        "familyName": "Torre", 
        "givenName": "Carmelo M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Rocha", 
        "givenName": "Ana Maria A.C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Taniar", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Apduhan", 
        "givenName": "Bernady O.", 
        "type": "Person"
      }, 
      {
        "familyName": "Tarantino", 
        "givenName": "Eufemia", 
        "type": "Person"
      }, 
      {
        "familyName": "Ryu", 
        "givenName": "Yeonseung", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-95162-1_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-95161-4", 
        "978-3-319-95162-1"
      ], 
      "name": "Computational Science and Its Applications \u2013 ICCSA 2018", 
      "type": "Book"
    }, 
    "name": "Automatic Segmentation and Quantification of Thigh Tissues in CT Images", 
    "pagination": "261-276", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-95162-1_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "173147badb2764c1cff9ee271beb0acd03db0a774e867bce9f88c7783276c0d2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105289393"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-95162-1_18", 
      "https://app.dimensions.ai/details/publication/pub.1105289393"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-95162-1_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95162-1_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95162-1_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95162-1_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95162-1_18'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      23 PREDICATES      56 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-95162-1_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5766838b28944e9db845fe77aa2c48cd
4 schema:citation sg:pub.10.1007/978-3-540-31865-1_25
5 sg:pub.10.1007/s00330-010-1799-2
6 sg:pub.10.1007/s11265-013-0755-1
7 sg:pub.10.1038/s41598-017-08925-8
8 https://doi.org/10.1002/0471221155
9 https://doi.org/10.1002/jmri.20167
10 https://doi.org/10.1002/jmri.21040
11 https://doi.org/10.1002/jmri.21699
12 https://doi.org/10.1002/jmri.23512
13 https://doi.org/10.1016/j.compbiomed.2009.11.020
14 https://doi.org/10.1016/j.compbiomed.2015.02.011
15 https://doi.org/10.1016/j.compbiomed.2016.02.001
16 https://doi.org/10.1016/j.compbiomed.2016.03.009
17 https://doi.org/10.1016/j.compbiomed.2016.03.025
18 https://doi.org/10.1016/j.compbiomed.2017.05.013
19 https://doi.org/10.1016/j.cviu.2016.03.008
20 https://doi.org/10.1016/j.neuroimage.2006.01.015
21 https://doi.org/10.1046/j.1532-5415.2002.50217.x
22 https://doi.org/10.1093/gerona/60.3.324
23 https://doi.org/10.1109/cbms.2009.5255342
24 https://doi.org/10.1109/icpr.2014.547
25 https://doi.org/10.1111/j.1749-6632.2000.tb06416.x
26 https://doi.org/10.1148/radiology.211.1.r99ap15283
27 https://doi.org/10.1155/2014/309570
28 https://doi.org/10.1155/2014/495084
29 https://doi.org/10.1590/s1679-45082014rb2912
30 https://doi.org/10.2196/medinform.4923
31 https://doi.org/10.2337/diacare.26.2.372
32 https://doi.org/10.2522/ptj.20080034
33 schema:datePublished 2018
34 schema:datePublishedReg 2018-01-01
35 schema:description Quantification and distribution of the thigh adipose tissues in CT images have clinical implication in prognostic chronic disease including type 2 diabetes and osteoarthritis. Although there are studies in the literature addressing the quantification of thigh tissues, only a handful of them aims to segment and quantify thigh adipose tissues in CT images automatically. In this study, we propose an automated technique for the segmentation and quantification of muscle, inter- and intra-muscular adipose tissue and subcutaneous adipose tissue in thigh CT images. Our technique combines morphological operations, thresholding, a Gaussian mixture model and the use of an accumulator matrix to map the number of adipose tissue pixels about muscle pixels and thus, to allow an automatic differentiation between SAT and Inter-MAT. Our method was quantitatively assessed using 144 thigh images extracted from 72 leg (left and right) CT scans. All images were manually segmented and the tissues quantified by a specialist with the help of a computer software and used for further comparative analysis. Our technique obtained precision of 0.998 and 0.982, respectively, for the fascia and thigh regions with corresponding recall values of 0.978 and 0.975. Also, the Dice similarity coefficient for both areas was close to 0.98.
36 schema:editor Nd58929ad18df45859213e4bc78e36272
37 schema:genre chapter
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N92e39a870b19402d8e1adf3098df14d1
41 schema:name Automatic Segmentation and Quantification of Thigh Tissues in CT Images
42 schema:pagination 261-276
43 schema:productId N8486d2d094b44ee39c7950a4346d38b5
44 Na95acc7cbdad45b9ada977305fad4aaf
45 Ne0a9a1c1caa64d43af90facf837a92e2
46 schema:publisher N3d59b0a214564b48b6b39a272bcd9424
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105289393
48 https://doi.org/10.1007/978-3-319-95162-1_18
49 schema:sdDatePublished 2019-04-15T12:13
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N9326efc61a614e4e96777aec2832d483
52 schema:url http://link.springer.com/10.1007/978-3-319-95162-1_18
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N0074fde6b61a47f9b52b63a59d40c50c schema:familyName Torre
57 schema:givenName Carmelo M.
58 rdf:type schema:Person
59 N02f5dfcce93941598a9a826d36747be7 rdf:first Nd8f10a2f1c0046b393ace49b1b093b73
60 rdf:rest rdf:nil
61 N06c998c2b7ab42fcb261abcb2c6e45c6 schema:familyName Misra
62 schema:givenName Sanjay
63 rdf:type schema:Person
64 N13b75cd34c7d4f6480eec29ee4c40bdf rdf:first sg:person.01006261610.04
65 rdf:rest Ne631ec1ca3b443e69dc7b89254c3da7c
66 N147fdb188bb94d36817d69ec9bf6e6ba schema:familyName Apduhan
67 schema:givenName Bernady O.
68 rdf:type schema:Person
69 N1867d1d6e80a478cab8c4e10fe820657 schema:familyName Tarantino
70 schema:givenName Eufemia
71 rdf:type schema:Person
72 N194326de4cda44cb8948a3366036ed4c rdf:first Nba5ed69ad3e44d3ea60ce333d837ff94
73 rdf:rest N997dbc17c7a641d49adf1b2896aa260a
74 N1b8e9dfc5572419994fc53695386f21a rdf:first N1867d1d6e80a478cab8c4e10fe820657
75 rdf:rest N02f5dfcce93941598a9a826d36747be7
76 N272af4a85db34afe936bc0e1f8654819 rdf:first sg:person.01335640663.75
77 rdf:rest Nc33493337bf04e77b07cb4ee265ddcdc
78 N2dc9abeb05b94164b0fb59fd634f70f7 schema:familyName Stankova
79 schema:givenName Elena
80 rdf:type schema:Person
81 N3c1b71f574af43f183e98c70b8e4ba60 rdf:first sg:person.016120264156.05
82 rdf:rest N541bd52cd8504d3980b0ddfccd40e097
83 N3d59b0a214564b48b6b39a272bcd9424 schema:location Cham
84 schema:name Springer International Publishing
85 rdf:type schema:Organisation
86 N541bd52cd8504d3980b0ddfccd40e097 rdf:first sg:person.07415212756.60
87 rdf:rest Na9be7bd4c35749c2b3140186e43f71d0
88 N5766838b28944e9db845fe77aa2c48cd rdf:first N8e762515f5024c2ebb2e66ef8c258e22
89 rdf:rest N3c1b71f574af43f183e98c70b8e4ba60
90 N718fc1e4eac2469b81b87b19cca45320 schema:familyName Gervasi
91 schema:givenName Osvaldo
92 rdf:type schema:Person
93 N8486d2d094b44ee39c7950a4346d38b5 schema:name dimensions_id
94 schema:value pub.1105289393
95 rdf:type schema:PropertyValue
96 N8e762515f5024c2ebb2e66ef8c258e22 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
97 schema:familyName de Carvalho Felinto
98 schema:givenName Jonas
99 rdf:type schema:Person
100 N92e39a870b19402d8e1adf3098df14d1 schema:isbn 978-3-319-95161-4
101 978-3-319-95162-1
102 schema:name Computational Science and Its Applications – ICCSA 2018
103 rdf:type schema:Book
104 N9326efc61a614e4e96777aec2832d483 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N997dbc17c7a641d49adf1b2896aa260a rdf:first N147fdb188bb94d36817d69ec9bf6e6ba
107 rdf:rest N1b8e9dfc5572419994fc53695386f21a
108 N9c7e5f88948a41c98bad1ce97b3cae29 rdf:first Ne2c53257e31845fa90ed0f24133fec33
109 rdf:rest Nb7bd1cb7ddc84f0db5f4206aa4ffbfbe
110 Na2830abe05314b06b015a73111171469 rdf:first N2dc9abeb05b94164b0fb59fd634f70f7
111 rdf:rest Nc7854928f22941558219203a9b024f96
112 Na95acc7cbdad45b9ada977305fad4aaf schema:name readcube_id
113 schema:value 173147badb2764c1cff9ee271beb0acd03db0a774e867bce9f88c7783276c0d2
114 rdf:type schema:PropertyValue
115 Na9be7bd4c35749c2b3140186e43f71d0 rdf:first sg:person.011620663547.58
116 rdf:rest N272af4a85db34afe936bc0e1f8654819
117 Nb7bd1cb7ddc84f0db5f4206aa4ffbfbe rdf:first N06c998c2b7ab42fcb261abcb2c6e45c6
118 rdf:rest Na2830abe05314b06b015a73111171469
119 Nba5ed69ad3e44d3ea60ce333d837ff94 schema:familyName Taniar
120 schema:givenName David
121 rdf:type schema:Person
122 Nc33493337bf04e77b07cb4ee265ddcdc rdf:first sg:person.014540452347.10
123 rdf:rest N13b75cd34c7d4f6480eec29ee4c40bdf
124 Nc7854928f22941558219203a9b024f96 rdf:first N0074fde6b61a47f9b52b63a59d40c50c
125 rdf:rest Nfebbea6214fe4e6ab954ae31c870f6e5
126 Nd58929ad18df45859213e4bc78e36272 rdf:first N718fc1e4eac2469b81b87b19cca45320
127 rdf:rest N9c7e5f88948a41c98bad1ce97b3cae29
128 Nd8f10a2f1c0046b393ace49b1b093b73 schema:familyName Ryu
129 schema:givenName Yeonseung
130 rdf:type schema:Person
131 Ndfefe586b22d4b4e99115eccbf3746ad schema:familyName Rocha
132 schema:givenName Ana Maria A.C.
133 rdf:type schema:Person
134 Ne0a9a1c1caa64d43af90facf837a92e2 schema:name doi
135 schema:value 10.1007/978-3-319-95162-1_18
136 rdf:type schema:PropertyValue
137 Ne2c53257e31845fa90ed0f24133fec33 schema:familyName Murgante
138 schema:givenName Beniamino
139 rdf:type schema:Person
140 Ne631ec1ca3b443e69dc7b89254c3da7c rdf:first sg:person.01163437042.03
141 rdf:rest rdf:nil
142 Nfebbea6214fe4e6ab954ae31c870f6e5 rdf:first Ndfefe586b22d4b4e99115eccbf3746ad
143 rdf:rest N194326de4cda44cb8948a3366036ed4c
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 sg:person.01006261610.04 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
151 schema:familyName Mattiello
152 schema:givenName Stela Márcia
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006261610.04
154 rdf:type schema:Person
155 sg:person.011620663547.58 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
156 schema:familyName Aily
157 schema:givenName Jessica Bianca
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620663547.58
159 rdf:type schema:Person
160 sg:person.01163437042.03 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
161 schema:familyName Ferrari
162 schema:givenName Ricardo José
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163437042.03
164 rdf:type schema:Person
165 sg:person.01335640663.75 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
166 schema:familyName de Almeida
167 schema:givenName Aline Castilho
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335640663.75
169 rdf:type schema:Person
170 sg:person.014540452347.10 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
171 schema:familyName Pedroso
172 schema:givenName Maria Gabriela
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014540452347.10
174 rdf:type schema:Person
175 sg:person.016120264156.05 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
176 schema:familyName Poloni
177 schema:givenName Katia Maria
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016120264156.05
179 rdf:type schema:Person
180 sg:person.07415212756.60 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
181 schema:familyName de Lima Freire
182 schema:givenName Paulo Guilherme
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07415212756.60
184 rdf:type schema:Person
185 sg:pub.10.1007/978-3-540-31865-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011627113
186 https://doi.org/10.1007/978-3-540-31865-1_25
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00330-010-1799-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040642145
189 https://doi.org/10.1007/s00330-010-1799-2
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s11265-013-0755-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003769627
192 https://doi.org/10.1007/s11265-013-0755-1
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/s41598-017-08925-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091449508
195 https://doi.org/10.1038/s41598-017-08925-8
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/0471221155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661048
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/jmri.20167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005554735
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/jmri.21040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025606875
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/jmri.21699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032222360
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1002/jmri.23512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045243355
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.compbiomed.2009.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049650375
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.compbiomed.2015.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012935745
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.compbiomed.2016.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008656841
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.compbiomed.2016.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051966706
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.compbiomed.2016.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004191723
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.compbiomed.2017.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085425001
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.cviu.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015121599
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/j.neuroimage.2006.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045466943
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1046/j.1532-5415.2002.50217.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033160006
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/gerona/60.3.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021887629
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/cbms.2009.5255342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093208079
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/icpr.2014.547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094052689
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1749-6632.2000.tb06416.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042487964
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1148/radiology.211.1.r99ap15283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010381041
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1155/2014/309570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050405561
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1155/2014/495084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003364368
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1590/s1679-45082014rb2912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008749980
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2196/medinform.4923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021999318
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2337/diacare.26.2.372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043321550
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2522/ptj.20080034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044782969
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
248 schema:name Federal University of São Carlos
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...