Post Processed Foundry MEMS Actuators for Large Deflection Optical Scanning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-10-02

AUTHORS

La Vern Starman , D. Torres , H. J. Hall , J. P. Walton , R. A. Lake

ABSTRACT

In this research effort, we developed MEMS micromirrors which are suitable for large angle deflections for optical scanning applications using the PolyMUMPs™ foundry fabrication process. This foundry process uses polysilicon and gold as the structural layers to form the bimorph beam structures which make up our actuation assembly. From both modeling and experimental testing, current micromirror designs fabricated in the PolyMUMPs™ process do not meet the deflection requirements to enable large angle scanning. As a result, we developed several post processing deposition techniques, using the PolyMUMPs™ structural layers as the baseline structure, to enable the necessary upward deflections to permit large angle scanning. In this research, we design, model, post fabricate, and test high out-of-plane MEMS actuators intended for integration with SOI micromirror arrays to enable the broadband, high fill-factor scanning applications. These arrays are designed to scan in multiple directions due to the segmented actuation design. The upward deflection is accomplished through material selection and design control (i.e., structure length, material thickness, material coefficient of thermal expansion (CTE), deposition temperature, and material layer composition) of bimorph structures. Following the post processed fabrication and sacrificial release; the initial deflection profiles are measured and compared against COMSOL™ models. More... »

PAGES

55-58

Book

TITLE

Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4

ISBN

978-3-319-95061-7
978-3-319-95062-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-95062-4_13

DOI

http://dx.doi.org/10.1007/978-3-319-95062-4_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107352521


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "La Vern Starman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "D.", 
        "id": "sg:person.010105373251.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105373251.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hall", 
        "givenName": "H. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright-Patterson Air Force Base", 
          "id": "https://www.grid.ac/institutes/grid.448385.6", 
          "name": [
            "Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walton", 
        "givenName": "J. P.", 
        "id": "sg:person.014621126264.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014621126264.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Air Force Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.427848.5", 
          "name": [
            "Air Force Institute of Technology, Wright-Patterson AFB, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lake", 
        "givenName": "R. A.", 
        "id": "sg:person.012306151307.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306151307.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/12.879069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022344603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-015-2597-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033356143", 
          "https://doi.org/10.1007/s00542-015-2597-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4258/8/7/s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059140613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2005.845446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2009.2023838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2010.2076777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061290909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2013.2290994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061291485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.012238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203847"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-02", 
    "datePublishedReg": "2018-10-02", 
    "description": "In this research effort, we developed MEMS micromirrors which are suitable for large angle deflections for optical scanning applications using the PolyMUMPs\u2122 foundry fabrication process. This foundry process uses polysilicon and gold as the structural layers to form the bimorph beam structures which make up our actuation assembly. From both modeling and experimental testing, current micromirror designs fabricated in the PolyMUMPs\u2122 process do not meet the deflection requirements to enable large angle scanning. As a result, we developed several post processing deposition techniques, using the PolyMUMPs\u2122 structural layers as the baseline structure, to enable the necessary upward deflections to permit large angle scanning. In this research, we design, model, post fabricate, and test high out-of-plane MEMS actuators intended for integration with SOI micromirror arrays to enable the broadband, high fill-factor scanning applications. These arrays are designed to scan in multiple directions due to the segmented actuation design. The upward deflection is accomplished through material selection and design control (i.e., structure length, material thickness, material coefficient of thermal expansion (CTE), deposition temperature, and material layer composition) of bimorph structures. Following the post processed fabrication and sacrificial release; the initial deflection profiles are measured and compared against COMSOL\u2122 models.", 
    "editor": [
      {
        "familyName": "Grady", 
        "givenName": "Martha", 
        "type": "Person"
      }, 
      {
        "familyName": "Minary", 
        "givenName": "Majid", 
        "type": "Person"
      }, 
      {
        "familyName": "Starman", 
        "givenName": "La Vern", 
        "type": "Person"
      }, 
      {
        "familyName": "Hay", 
        "givenName": "Jenny", 
        "type": "Person"
      }, 
      {
        "familyName": "Notbohm", 
        "givenName": "Jacob", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-95062-4_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-95061-7", 
        "978-3-319-95062-4"
      ], 
      "name": "Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4", 
      "type": "Book"
    }, 
    "name": "Post Processed Foundry MEMS Actuators for Large Deflection Optical Scanning", 
    "pagination": "55-58", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-95062-4_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ebdb31453ac80cfbf972bffdacb60fdfd7b8477ec53da1e588c2719f25c7763f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107352521"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-95062-4_13", 
      "https://app.dimensions.ai/details/publication/pub.1107352521"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-95062-4_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95062-4_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95062-4_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95062-4_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-95062-4_13'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      34 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-95062-4_13 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N568bd466de494bf0b37a933084d3da5d
4 schema:citation sg:pub.10.1007/s00542-015-2597-1
5 https://doi.org/10.1088/1464-4258/8/7/s10
6 https://doi.org/10.1109/jmems.2005.845446
7 https://doi.org/10.1109/jmems.2009.2023838
8 https://doi.org/10.1109/jmems.2010.2076777
9 https://doi.org/10.1109/jmems.2013.2290994
10 https://doi.org/10.1117/12.879069
11 https://doi.org/10.1364/oe.21.012238
12 schema:datePublished 2018-10-02
13 schema:datePublishedReg 2018-10-02
14 schema:description In this research effort, we developed MEMS micromirrors which are suitable for large angle deflections for optical scanning applications using the PolyMUMPs™ foundry fabrication process. This foundry process uses polysilicon and gold as the structural layers to form the bimorph beam structures which make up our actuation assembly. From both modeling and experimental testing, current micromirror designs fabricated in the PolyMUMPs™ process do not meet the deflection requirements to enable large angle scanning. As a result, we developed several post processing deposition techniques, using the PolyMUMPs™ structural layers as the baseline structure, to enable the necessary upward deflections to permit large angle scanning. In this research, we design, model, post fabricate, and test high out-of-plane MEMS actuators intended for integration with SOI micromirror arrays to enable the broadband, high fill-factor scanning applications. These arrays are designed to scan in multiple directions due to the segmented actuation design. The upward deflection is accomplished through material selection and design control (i.e., structure length, material thickness, material coefficient of thermal expansion (CTE), deposition temperature, and material layer composition) of bimorph structures. Following the post processed fabrication and sacrificial release; the initial deflection profiles are measured and compared against COMSOL™ models.
15 schema:editor Ndfef08a5f0424545b2fab8208e7431b2
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N876c56f9a5be4d7f85c11b0363badda9
20 schema:name Post Processed Foundry MEMS Actuators for Large Deflection Optical Scanning
21 schema:pagination 55-58
22 schema:productId N0152e42e2377455baad2f2b4ebf75589
23 N67c2406517ef47f68559284b376cc26e
24 Nc423cdd1c9b34a9a9c8cae69936bb10a
25 schema:publisher Na874b8f6dc5c4a1995f62e544cf09984
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107352521
27 https://doi.org/10.1007/978-3-319-95062-4_13
28 schema:sdDatePublished 2019-04-16T05:01
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N5503c45fc1d54ffea27dfb8dcdee0cb8
31 schema:url https://link.springer.com/10.1007%2F978-3-319-95062-4_13
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N0152e42e2377455baad2f2b4ebf75589 schema:name readcube_id
36 schema:value ebdb31453ac80cfbf972bffdacb60fdfd7b8477ec53da1e588c2719f25c7763f
37 rdf:type schema:PropertyValue
38 N1817501138234f919c54b81d49d51b6a schema:affiliation https://www.grid.ac/institutes/grid.448385.6
39 schema:familyName Hall
40 schema:givenName H. J.
41 rdf:type schema:Person
42 N29d78151a04946abbb7a3a23339ac1e1 schema:familyName Grady
43 schema:givenName Martha
44 rdf:type schema:Person
45 N446ba71ff36f484daf00755bd8222483 schema:familyName Notbohm
46 schema:givenName Jacob
47 rdf:type schema:Person
48 N53fea9e7bb854072a204def74cb6789b rdf:first N9ed6819d498f4eed963bee0c93a63912
49 rdf:rest Nea92d0e6a6ef476ab2d768488b47cbae
50 N5503c45fc1d54ffea27dfb8dcdee0cb8 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N568bd466de494bf0b37a933084d3da5d rdf:first Ne17e63b97c9244ddbb0a3a18d6fb3721
53 rdf:rest N8ee00a4610b24805add73cbeff5e9b17
54 N67c2406517ef47f68559284b376cc26e schema:name doi
55 schema:value 10.1007/978-3-319-95062-4_13
56 rdf:type schema:PropertyValue
57 N876c56f9a5be4d7f85c11b0363badda9 schema:isbn 978-3-319-95061-7
58 978-3-319-95062-4
59 schema:name Mechanics of Biological Systems & Micro-and Nanomechanics, Volume 4
60 rdf:type schema:Book
61 N8b6b937985ba40e697af5743add44e35 schema:familyName Minary
62 schema:givenName Majid
63 rdf:type schema:Person
64 N8e130451cbba41e88a95b79101f905ec rdf:first N446ba71ff36f484daf00755bd8222483
65 rdf:rest rdf:nil
66 N8ee00a4610b24805add73cbeff5e9b17 rdf:first sg:person.010105373251.32
67 rdf:rest Ncd95d5e008a14ab69efc6dae6b225189
68 N9177a6e7ac2e4a6489a01e65a33ab64c rdf:first sg:person.012306151307.19
69 rdf:rest rdf:nil
70 N9ed6819d498f4eed963bee0c93a63912 schema:familyName Starman
71 schema:givenName La Vern
72 rdf:type schema:Person
73 Na874b8f6dc5c4a1995f62e544cf09984 schema:location Cham
74 schema:name Springer International Publishing
75 rdf:type schema:Organisation
76 Nbbeb978096c145c788d83d8f30d4bcb5 schema:familyName Hay
77 schema:givenName Jenny
78 rdf:type schema:Person
79 Nc423cdd1c9b34a9a9c8cae69936bb10a schema:name dimensions_id
80 schema:value pub.1107352521
81 rdf:type schema:PropertyValue
82 Ncd95d5e008a14ab69efc6dae6b225189 rdf:first N1817501138234f919c54b81d49d51b6a
83 rdf:rest Ne87af972cdfd42f5904f8b1d0d8e38b2
84 Ndfef08a5f0424545b2fab8208e7431b2 rdf:first N29d78151a04946abbb7a3a23339ac1e1
85 rdf:rest Necb34145c80d439bb147d5e09e6e2bf0
86 Ne17e63b97c9244ddbb0a3a18d6fb3721 schema:affiliation https://www.grid.ac/institutes/grid.448385.6
87 schema:familyName La Vern Starman
88 rdf:type schema:Person
89 Ne87af972cdfd42f5904f8b1d0d8e38b2 rdf:first sg:person.014621126264.09
90 rdf:rest N9177a6e7ac2e4a6489a01e65a33ab64c
91 Nea92d0e6a6ef476ab2d768488b47cbae rdf:first Nbbeb978096c145c788d83d8f30d4bcb5
92 rdf:rest N8e130451cbba41e88a95b79101f905ec
93 Necb34145c80d439bb147d5e09e6e2bf0 rdf:first N8b6b937985ba40e697af5743add44e35
94 rdf:rest N53fea9e7bb854072a204def74cb6789b
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:person.010105373251.32 schema:affiliation https://www.grid.ac/institutes/grid.448385.6
102 schema:familyName Torres
103 schema:givenName D.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010105373251.32
105 rdf:type schema:Person
106 sg:person.012306151307.19 schema:affiliation https://www.grid.ac/institutes/grid.427848.5
107 schema:familyName Lake
108 schema:givenName R. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306151307.19
110 rdf:type schema:Person
111 sg:person.014621126264.09 schema:affiliation https://www.grid.ac/institutes/grid.448385.6
112 schema:familyName Walton
113 schema:givenName J. P.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014621126264.09
115 rdf:type schema:Person
116 sg:pub.10.1007/s00542-015-2597-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033356143
117 https://doi.org/10.1007/s00542-015-2597-1
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/1464-4258/8/7/s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059140613
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/jmems.2005.845446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290048
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/jmems.2009.2023838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290712
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/jmems.2010.2076777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061290909
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/jmems.2013.2290994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061291485
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1117/12.879069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022344603
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1364/oe.21.012238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203847
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.427848.5 schema:alternateName Air Force Institute of Technology
134 schema:name Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.448385.6 schema:alternateName Wright-Patterson Air Force Base
137 schema:name Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...