Examination of the Brain Areas Related to Cognitive Performance During the Stroop Task Using Deep Neural Network View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-27

AUTHORS

Tomohiro Nishikawa , Yushi Hashimoto , Kosei Minami , Keiichi Watanuki , Kazunori Kaede , Keiichi Muramatsu

ABSTRACT

To examine brain areas related to the cognitive load condition during the Stroop task, we proposed a method using a Deep Neural Network (DNN). We acquired cerebral blood flow data in congruent and incongruent tasks by near-infrared spectroscopy (NIRS) equipped with 22 ch. The data were used to train a DNN, and the influence of each factor on the output was evaluated. Our DNN model consists of independent input layers for each channel of NIRS, as well as fully-connected hidden layers and output layers. Our results suggest that the medial prefrontal cortex (focusing on cognition) and the left inferior frontal gyrus (focusing on language processing) were involved in the cognitive load during the Stroop task. These results in the Stroop task were consistent. Therefore, the proposed method’s utility was confirmed. More... »

PAGES

94-101

Book

TITLE

Advances in Affective and Pleasurable Design

ISBN

978-3-319-94943-7
978-3-319-94944-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_11

DOI

http://dx.doi.org/10.1007/978-3-319-94944-4_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105143011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nishikawa", 
        "givenName": "Tomohiro", 
        "id": "sg:person.010434263313.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434263313.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Yushi", 
        "id": "sg:person.015015126313.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minami", 
        "givenName": "Kosei", 
        "id": "sg:person.010101606010.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101606010.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanuki", 
        "givenName": "Keiichi", 
        "id": "sg:person.010636555633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaede", 
        "givenName": "Kazunori", 
        "id": "sg:person.016177627402.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muramatsu", 
        "givenName": "Keiichi", 
        "id": "sg:person.013446336446.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-06-27", 
    "datePublishedReg": "2018-06-27", 
    "description": "To examine brain areas related to the cognitive load condition during the Stroop task, we proposed a method using a Deep Neural Network (DNN). We acquired cerebral blood flow data in congruent and incongruent tasks by near-infrared spectroscopy (NIRS) equipped with 22 ch. The data were used to train a DNN, and the influence of each factor on the output was evaluated. Our DNN model consists of independent input layers for each channel of NIRS, as well as fully-connected hidden layers and output layers. Our results suggest that the medial prefrontal cortex (focusing on cognition) and the left inferior frontal gyrus (focusing on language processing) were involved in the cognitive load during the Stroop task. These results in the Stroop task were consistent. Therefore, the proposed method\u2019s utility was confirmed.", 
    "editor": [
      {
        "familyName": "Fukuda", 
        "givenName": "Shuichi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-94944-4_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-94943-7", 
        "978-3-319-94944-4"
      ], 
      "name": "Advances in Affective and Pleasurable Design", 
      "type": "Book"
    }, 
    "keywords": [
      "Stroop task", 
      "deep neural networks", 
      "left inferior frontal gyrus", 
      "cognitive load conditions", 
      "brain areas", 
      "inferior frontal gyrus", 
      "medial prefrontal cortex", 
      "cognitive load", 
      "incongruent task", 
      "cognitive performance", 
      "frontal gyrus", 
      "cerebral blood flow data", 
      "prefrontal cortex", 
      "task", 
      "neural network", 
      "DNN model", 
      "blood flow data", 
      "gyrus", 
      "congruent", 
      "output layer", 
      "cortex", 
      "input layer", 
      "hidden layer", 
      "load conditions", 
      "NIRS", 
      "utility", 
      "performance", 
      "influence", 
      "results", 
      "network", 
      "factors", 
      "data", 
      "method's utility", 
      "model", 
      "area", 
      "examination", 
      "conditions", 
      "load", 
      "output", 
      "method", 
      "flow data", 
      "channels", 
      "layer", 
      "CH", 
      "spectroscopy", 
      "independent input layers", 
      "channel of NIRS"
    ], 
    "name": "Examination of the Brain Areas Related to Cognitive Performance During the Stroop Task Using Deep Neural Network", 
    "pagination": "94-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105143011"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-94944-4_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-94944-4_11", 
      "https://app.dimensions.ai/details/publication/pub.1105143011"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_230.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-94944-4_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_11'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      23 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-94944-4_11 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nbfd1feea00c740669a1cb7804805b540
4 schema:datePublished 2018-06-27
5 schema:datePublishedReg 2018-06-27
6 schema:description To examine brain areas related to the cognitive load condition during the Stroop task, we proposed a method using a Deep Neural Network (DNN). We acquired cerebral blood flow data in congruent and incongruent tasks by near-infrared spectroscopy (NIRS) equipped with 22 ch. The data were used to train a DNN, and the influence of each factor on the output was evaluated. Our DNN model consists of independent input layers for each channel of NIRS, as well as fully-connected hidden layers and output layers. Our results suggest that the medial prefrontal cortex (focusing on cognition) and the left inferior frontal gyrus (focusing on language processing) were involved in the cognitive load during the Stroop task. These results in the Stroop task were consistent. Therefore, the proposed method’s utility was confirmed.
7 schema:editor N7e789c3f6296453da995b0916fe3fceb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N890f10f315e540f2b63832c3ea3f0309
12 schema:keywords CH
13 DNN model
14 NIRS
15 Stroop task
16 area
17 blood flow data
18 brain areas
19 cerebral blood flow data
20 channel of NIRS
21 channels
22 cognitive load
23 cognitive load conditions
24 cognitive performance
25 conditions
26 congruent
27 cortex
28 data
29 deep neural networks
30 examination
31 factors
32 flow data
33 frontal gyrus
34 gyrus
35 hidden layer
36 incongruent task
37 independent input layers
38 inferior frontal gyrus
39 influence
40 input layer
41 layer
42 left inferior frontal gyrus
43 load
44 load conditions
45 medial prefrontal cortex
46 method
47 method's utility
48 model
49 network
50 neural network
51 output
52 output layer
53 performance
54 prefrontal cortex
55 results
56 spectroscopy
57 task
58 utility
59 schema:name Examination of the Brain Areas Related to Cognitive Performance During the Stroop Task Using Deep Neural Network
60 schema:pagination 94-101
61 schema:productId N65bfac0fe3924cf4974699c7eb9c0262
62 Nbfe10cd3f8274a12a6d3e0afe57cb203
63 schema:publisher N94ccf8ce28b1432c8b71920be25878b0
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105143011
65 https://doi.org/10.1007/978-3-319-94944-4_11
66 schema:sdDatePublished 2021-11-01T18:51
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N8c7f2e74bb894d6ba4028eacfa697e80
69 schema:url https://doi.org/10.1007/978-3-319-94944-4_11
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N18282ddcecee4214a8142b3cd431bcc4 rdf:first sg:person.015015126313.18
74 rdf:rest Ne44de5123d7b4b638e7553d0fa0df1d2
75 N40c3e1247c894a23ad3fd236b8d99ac0 schema:familyName Fukuda
76 schema:givenName Shuichi
77 rdf:type schema:Person
78 N5fb49a305e7a4c52bb5a689c7ad4233f rdf:first sg:person.016177627402.79
79 rdf:rest Nb74747b970d84577b347254225b6c612
80 N65bfac0fe3924cf4974699c7eb9c0262 schema:name doi
81 schema:value 10.1007/978-3-319-94944-4_11
82 rdf:type schema:PropertyValue
83 N7e789c3f6296453da995b0916fe3fceb rdf:first N40c3e1247c894a23ad3fd236b8d99ac0
84 rdf:rest rdf:nil
85 N890f10f315e540f2b63832c3ea3f0309 schema:isbn 978-3-319-94943-7
86 978-3-319-94944-4
87 schema:name Advances in Affective and Pleasurable Design
88 rdf:type schema:Book
89 N8c7f2e74bb894d6ba4028eacfa697e80 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N94ccf8ce28b1432c8b71920be25878b0 schema:name Springer Nature
92 rdf:type schema:Organisation
93 Nb74747b970d84577b347254225b6c612 rdf:first sg:person.013446336446.48
94 rdf:rest rdf:nil
95 Nbfd1feea00c740669a1cb7804805b540 rdf:first sg:person.010434263313.23
96 rdf:rest N18282ddcecee4214a8142b3cd431bcc4
97 Nbfe10cd3f8274a12a6d3e0afe57cb203 schema:name dimensions_id
98 schema:value pub.1105143011
99 rdf:type schema:PropertyValue
100 Nd041e431050f47fca9f8a6be621b36b6 rdf:first sg:person.010636555633.09
101 rdf:rest N5fb49a305e7a4c52bb5a689c7ad4233f
102 Ne44de5123d7b4b638e7553d0fa0df1d2 rdf:first sg:person.010101606010.13
103 rdf:rest Nd041e431050f47fca9f8a6be621b36b6
104 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
105 schema:name Psychology and Cognitive Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
108 schema:name Psychology
109 rdf:type schema:DefinedTerm
110 sg:person.010101606010.13 schema:affiliation grid-institutes:grid.263023.6
111 schema:familyName Minami
112 schema:givenName Kosei
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101606010.13
114 rdf:type schema:Person
115 sg:person.010434263313.23 schema:affiliation grid-institutes:grid.263023.6
116 schema:familyName Nishikawa
117 schema:givenName Tomohiro
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010434263313.23
119 rdf:type schema:Person
120 sg:person.010636555633.09 schema:affiliation grid-institutes:grid.263023.6
121 schema:familyName Watanuki
122 schema:givenName Keiichi
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09
124 rdf:type schema:Person
125 sg:person.013446336446.48 schema:affiliation grid-institutes:grid.263023.6
126 schema:familyName Muramatsu
127 schema:givenName Keiichi
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48
129 rdf:type schema:Person
130 sg:person.015015126313.18 schema:affiliation grid-institutes:grid.263023.6
131 schema:familyName Hashimoto
132 schema:givenName Yushi
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18
134 rdf:type schema:Person
135 sg:person.016177627402.79 schema:affiliation grid-institutes:grid.263023.6
136 schema:familyName Kaede
137 schema:givenName Kazunori
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79
139 rdf:type schema:Person
140 grid-institutes:grid.263023.6 schema:alternateName Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan
141 schema:name Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, 338-8570, Saitama-shi, Saitama, Japan
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...