Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Yushi Hashimoto , Keiichi Watanuki , Kazunori Kaede , Keiichi Muramatsu

ABSTRACT

There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the “Stroop task” was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the “Stroop task”; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load. More... »

PAGES

85-93

Book

TITLE

Advances in Affective and Pleasurable Design

ISBN

978-3-319-94943-7
978-3-319-94944-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10

DOI

http://dx.doi.org/10.1007/978-3-319-94944-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105146510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Yushi", 
        "id": "sg:person.015015126313.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanuki", 
        "givenName": "Keiichi", 
        "id": "sg:person.010636555633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaede", 
        "givenName": "Kazunori", 
        "id": "sg:person.016177627402.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muramatsu", 
        "givenName": "Keiichi", 
        "id": "sg:person.013446336446.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5265/jcogpsy.9.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040051213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5371(80)90312-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041654075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2496/hbfr.32.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050090246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.93.5.1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063337007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the \u201cStroop task\u201d was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the \u201cStroop task\u201d; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load.", 
    "editor": [
      {
        "familyName": "Fukuda", 
        "givenName": "Shuichi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-94944-4_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-94943-7", 
        "978-3-319-94944-4"
      ], 
      "name": "Advances in Affective and Pleasurable Design", 
      "type": "Book"
    }, 
    "name": "Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop Task", 
    "pagination": "85-93", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-94944-4_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "886232fa454365f1843ed7a94ee2c70e6c6ed6e39569d0918728b17a699fdea6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105146510"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-94944-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1105146510"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000430.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-94944-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-94944-4_10 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N4ad37c44d43449028349d3a57eca5a19
4 schema:citation https://doi.org/10.1002/hbm.10052
5 https://doi.org/10.1016/s0022-5371(80)90312-6
6 https://doi.org/10.1161/01.cir.93.5.1043
7 https://doi.org/10.2496/hbfr.32.7
8 https://doi.org/10.5265/jcogpsy.9.19
9 schema:datePublished 2019
10 schema:datePublishedReg 2019-01-01
11 schema:description There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the “Stroop task” was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the “Stroop task”; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load.
12 schema:editor N506be9a5c91941a1be4382f4ef6afa1d
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Na0eb5bba8d234dd78d6b9ebd984aa0d1
17 schema:name Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop Task
18 schema:pagination 85-93
19 schema:productId Nac15b93ab684423daf2db9639f5ea409
20 Nac83b2fcc66b4a58a125418de2ef07d5
21 Nb721a6137f914329be7bebc81fb57c65
22 schema:publisher Na4a364e048bf4d9f8bab7b7c8bc6f8d9
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105146510
24 https://doi.org/10.1007/978-3-319-94944-4_10
25 schema:sdDatePublished 2019-04-15T17:32
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N8b3674b87e664827912fb2e4039467d1
28 schema:url http://link.springer.com/10.1007/978-3-319-94944-4_10
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N1bb57b56b716437c889443dd47b77e7c schema:familyName Fukuda
33 schema:givenName Shuichi
34 rdf:type schema:Person
35 N4ad37c44d43449028349d3a57eca5a19 rdf:first sg:person.015015126313.18
36 rdf:rest Ne94a704bdbfe46168f0a61c3bf6ef46b
37 N506be9a5c91941a1be4382f4ef6afa1d rdf:first N1bb57b56b716437c889443dd47b77e7c
38 rdf:rest rdf:nil
39 N5120e659ec3e408ab0939c38705e1695 rdf:first sg:person.016177627402.79
40 rdf:rest N94f19aa89d6a400daffe26e26cb35c52
41 N8b3674b87e664827912fb2e4039467d1 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N94f19aa89d6a400daffe26e26cb35c52 rdf:first sg:person.013446336446.48
44 rdf:rest rdf:nil
45 Na0eb5bba8d234dd78d6b9ebd984aa0d1 schema:isbn 978-3-319-94943-7
46 978-3-319-94944-4
47 schema:name Advances in Affective and Pleasurable Design
48 rdf:type schema:Book
49 Na4a364e048bf4d9f8bab7b7c8bc6f8d9 schema:location Cham
50 schema:name Springer International Publishing
51 rdf:type schema:Organisation
52 Nac15b93ab684423daf2db9639f5ea409 schema:name dimensions_id
53 schema:value pub.1105146510
54 rdf:type schema:PropertyValue
55 Nac83b2fcc66b4a58a125418de2ef07d5 schema:name doi
56 schema:value 10.1007/978-3-319-94944-4_10
57 rdf:type schema:PropertyValue
58 Nb721a6137f914329be7bebc81fb57c65 schema:name readcube_id
59 schema:value 886232fa454365f1843ed7a94ee2c70e6c6ed6e39569d0918728b17a699fdea6
60 rdf:type schema:PropertyValue
61 Ne94a704bdbfe46168f0a61c3bf6ef46b rdf:first sg:person.010636555633.09
62 rdf:rest N5120e659ec3e408ab0939c38705e1695
63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
64 schema:name Psychology and Cognitive Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
67 schema:name Psychology
68 rdf:type schema:DefinedTerm
69 sg:person.010636555633.09 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
70 schema:familyName Watanuki
71 schema:givenName Keiichi
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09
73 rdf:type schema:Person
74 sg:person.013446336446.48 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
75 schema:familyName Muramatsu
76 schema:givenName Keiichi
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48
78 rdf:type schema:Person
79 sg:person.015015126313.18 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
80 schema:familyName Hashimoto
81 schema:givenName Yushi
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18
83 rdf:type schema:Person
84 sg:person.016177627402.79 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
85 schema:familyName Kaede
86 schema:givenName Kazunori
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79
88 rdf:type schema:Person
89 https://doi.org/10.1002/hbm.10052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928987
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0022-5371(80)90312-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041654075
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1161/01.cir.93.5.1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063337007
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2496/hbfr.32.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050090246
96 rdf:type schema:CreativeWork
97 https://doi.org/10.5265/jcogpsy.9.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040051213
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
100 schema:name Saitama University
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...