Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Yushi Hashimoto , Keiichi Watanuki , Kazunori Kaede , Keiichi Muramatsu

ABSTRACT

There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the “Stroop task” was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the “Stroop task”; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load. More... »

PAGES

85-93

Book

TITLE

Advances in Affective and Pleasurable Design

ISBN

978-3-319-94943-7
978-3-319-94944-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10

DOI

http://dx.doi.org/10.1007/978-3-319-94944-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105146510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Yushi", 
        "id": "sg:person.015015126313.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanuki", 
        "givenName": "Keiichi", 
        "id": "sg:person.010636555633.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaede", 
        "givenName": "Kazunori", 
        "id": "sg:person.016177627402.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saitama University", 
          "id": "https://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Saitama University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muramatsu", 
        "givenName": "Keiichi", 
        "id": "sg:person.013446336446.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5265/jcogpsy.9.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040051213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5371(80)90312-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041654075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2496/hbfr.32.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050090246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.93.5.1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063337007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the \u201cStroop task\u201d was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the \u201cStroop task\u201d; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load.", 
    "editor": [
      {
        "familyName": "Fukuda", 
        "givenName": "Shuichi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-94944-4_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-94943-7", 
        "978-3-319-94944-4"
      ], 
      "name": "Advances in Affective and Pleasurable Design", 
      "type": "Book"
    }, 
    "name": "Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop Task", 
    "pagination": "85-93", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-94944-4_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "886232fa454365f1843ed7a94ee2c70e6c6ed6e39569d0918728b17a699fdea6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105146510"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-94944-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1105146510"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000430.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-94944-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94944-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-94944-4_10 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Na4f42d8c8c0147c9a02d49a56fd6cad7
4 schema:citation https://doi.org/10.1002/hbm.10052
5 https://doi.org/10.1016/s0022-5371(80)90312-6
6 https://doi.org/10.1161/01.cir.93.5.1043
7 https://doi.org/10.2496/hbfr.32.7
8 https://doi.org/10.5265/jcogpsy.9.19
9 schema:datePublished 2019
10 schema:datePublishedReg 2019-01-01
11 schema:description There have been several recent attempts to aid car drivers by providing information on internal and external car environments. The optimal amount of information must be determined to avoid confusion. In this study, the “Stroop task” was used for information processing, and the cognitive load was gradually increased by adding information in stages. We designed and conducted two tasks that originate in the “Stroop task”; these two tasks feature significant differences in cognitive load. We also measured brain activity using near-infrared spectroscopy (NIRS) under the assumption that such activity can be used as an index of cognitive load. Both tasks were associated with increased oxy-hemoglobin levels in the prefrontal area, and the task with a higher cognitive load was associated with a more substantial increase in oxy-hemoglobin; this indicates that oxy-hemoglobin levels may be used as an objective index for the evaluation of information-associated cognitive load.
12 schema:editor N9ab5fe8c27e041bcb0fe71a6e2be252e
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5e76b84f1b4d477b836a7642951c619c
17 schema:name Evaluation of the Effect of the Amount of Information on Cognitive Load by Using a Physiological Index and the Stroop Task
18 schema:pagination 85-93
19 schema:productId Nafcf4558a25b4767aa21213a778d7c2d
20 Ndf41c04bffc6463cae98ed553d85fe2f
21 Ne21ba172a42846a49bd2e1c394bd33b0
22 schema:publisher Nd42c1cf0c98348bc80d1059374c20d61
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105146510
24 https://doi.org/10.1007/978-3-319-94944-4_10
25 schema:sdDatePublished 2019-04-15T17:32
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N3ba973877db8473c8a37a23b3f36d25a
28 schema:url http://link.springer.com/10.1007/978-3-319-94944-4_10
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N196870d6b03042c1a58c241c20591e30 rdf:first sg:person.013446336446.48
33 rdf:rest rdf:nil
34 N3ba973877db8473c8a37a23b3f36d25a schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N4abc5e17bc4742499ea93bcab2a03250 rdf:first sg:person.016177627402.79
37 rdf:rest N196870d6b03042c1a58c241c20591e30
38 N5e76b84f1b4d477b836a7642951c619c schema:isbn 978-3-319-94943-7
39 978-3-319-94944-4
40 schema:name Advances in Affective and Pleasurable Design
41 rdf:type schema:Book
42 N9ab5fe8c27e041bcb0fe71a6e2be252e rdf:first Nc8ede4c01ca94f6997817ac8a76f95ed
43 rdf:rest rdf:nil
44 N9c7eab0e3e1348968fd351e0131344a5 rdf:first sg:person.010636555633.09
45 rdf:rest N4abc5e17bc4742499ea93bcab2a03250
46 Na4f42d8c8c0147c9a02d49a56fd6cad7 rdf:first sg:person.015015126313.18
47 rdf:rest N9c7eab0e3e1348968fd351e0131344a5
48 Nafcf4558a25b4767aa21213a778d7c2d schema:name readcube_id
49 schema:value 886232fa454365f1843ed7a94ee2c70e6c6ed6e39569d0918728b17a699fdea6
50 rdf:type schema:PropertyValue
51 Nc8ede4c01ca94f6997817ac8a76f95ed schema:familyName Fukuda
52 schema:givenName Shuichi
53 rdf:type schema:Person
54 Nd42c1cf0c98348bc80d1059374c20d61 schema:location Cham
55 schema:name Springer International Publishing
56 rdf:type schema:Organisation
57 Ndf41c04bffc6463cae98ed553d85fe2f schema:name doi
58 schema:value 10.1007/978-3-319-94944-4_10
59 rdf:type schema:PropertyValue
60 Ne21ba172a42846a49bd2e1c394bd33b0 schema:name dimensions_id
61 schema:value pub.1105146510
62 rdf:type schema:PropertyValue
63 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
64 schema:name Psychology and Cognitive Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
67 schema:name Psychology
68 rdf:type schema:DefinedTerm
69 sg:person.010636555633.09 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
70 schema:familyName Watanuki
71 schema:givenName Keiichi
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636555633.09
73 rdf:type schema:Person
74 sg:person.013446336446.48 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
75 schema:familyName Muramatsu
76 schema:givenName Keiichi
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446336446.48
78 rdf:type schema:Person
79 sg:person.015015126313.18 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
80 schema:familyName Hashimoto
81 schema:givenName Yushi
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015126313.18
83 rdf:type schema:Person
84 sg:person.016177627402.79 schema:affiliation https://www.grid.ac/institutes/grid.263023.6
85 schema:familyName Kaede
86 schema:givenName Kazunori
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016177627402.79
88 rdf:type schema:Person
89 https://doi.org/10.1002/hbm.10052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928987
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0022-5371(80)90312-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041654075
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1161/01.cir.93.5.1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063337007
94 rdf:type schema:CreativeWork
95 https://doi.org/10.2496/hbfr.32.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050090246
96 rdf:type schema:CreativeWork
97 https://doi.org/10.5265/jcogpsy.9.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040051213
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.263023.6 schema:alternateName Saitama University
100 schema:name Saitama University
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...