A Mathematical Model for Customer Lifetime Value Based Offer Management View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Ahmet Şahin , Zehra Can , Erinc Albey

ABSTRACT

Customers with prepaid lines possess higher attrition risk compared to postpaid customers, since prepaid customers do not sign long-term obligatory contracts and may churn anytime. For this reason, mobile operators have to offer engaging benefits to keep prepaid subscribers with the company. Since all such offers incur additional cost, mobile operators face an optimization problem while selecting the most suitable offers for customers at risk. In this study, an offer management framework targeting prepaid customers of a telecommunication company is developed. Proposed framework chooses the most suitable offer for each customer through a mathematical model, which utilizes customer lifetime value and churn risk. Lifetime values are estimated using logistic regression and Pareto/NBD models, and several variants of these models are used to predict churn risks using a large number of customer specific features. More... »

PAGES

27-45

References to SciGraph publications

Book

TITLE

Data Management Technologies and Applications

ISBN

978-3-319-94808-9
978-3-319-94809-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-94809-6_2

DOI

http://dx.doi.org/10.1007/978-3-319-94809-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105220758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u015eahin", 
        "givenName": "Ahmet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University", 
            "Turkcell Technology Research and Development Inc"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Can", 
        "givenName": "Zehra", 
        "id": "sg:person.013564607662.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564607662.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00d6zye\u011fin University", 
          "id": "https://www.grid.ac/institutes/grid.28009.33", 
          "name": [
            "Ozyegin University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albey", 
        "givenName": "Erinc", 
        "id": "sg:person.013160555733.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160555733.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.procs.2010.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020446223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbusres.2016.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025634288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/k-04-2015-0113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029394335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40165-015-0014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030750238", 
          "https://doi.org/10.1186/s40165-015-0014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40165-015-0014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030750238", 
          "https://doi.org/10.1186/s40165-015-0014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkg.69.2.84.60760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031624869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkg.69.2.84.60760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031624869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.08.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033876095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.2005.42.4.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039725941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.2005.42.4.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039725941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1509/jmkr.2005.42.4.415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039725941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mksc.1090.0502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064712977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mksc.2015.0963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064713739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2007.728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094329663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0006425300670074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096020441"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Customers with prepaid lines possess higher attrition risk compared to postpaid customers, since prepaid customers do not sign long-term obligatory contracts and may churn anytime. For this reason, mobile operators have to offer engaging benefits to keep prepaid subscribers with the company. Since all such offers incur additional cost, mobile operators face an optimization problem while selecting the most suitable offers for customers at risk. In this study, an offer management framework targeting prepaid customers of a telecommunication company is developed. Proposed framework chooses the most suitable offer for each customer through a mathematical model, which utilizes customer lifetime value and churn risk. Lifetime values are estimated using logistic regression and Pareto/NBD models, and several variants of these models are used to predict churn risks using a large number of customer specific features.", 
    "editor": [
      {
        "familyName": "Filipe", 
        "givenName": "Joaquim", 
        "type": "Person"
      }, 
      {
        "familyName": "Bernardino", 
        "givenName": "Jorge", 
        "type": "Person"
      }, 
      {
        "familyName": "Quix", 
        "givenName": "Christoph", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-94809-6_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-94808-9", 
        "978-3-319-94809-6"
      ], 
      "name": "Data Management Technologies and Applications", 
      "type": "Book"
    }, 
    "name": "A Mathematical Model for Customer Lifetime Value Based Offer Management", 
    "pagination": "27-45", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-94809-6_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de60316543bcd565a1cce2ce1fba8824ad85db9e86645df570dbb2be2de2c1bd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105220758"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-94809-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1105220758"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000432.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-94809-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94809-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94809-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94809-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94809-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-94809-6_2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf42555789b984a64a38993e8f8a1c28a
4 schema:citation sg:pub.10.1186/s40165-015-0014-6
5 https://doi.org/10.1016/j.eswa.2011.08.024
6 https://doi.org/10.1016/j.jbusres.2016.04.017
7 https://doi.org/10.1016/j.procs.2010.12.011
8 https://doi.org/10.1108/k-04-2015-0113
9 https://doi.org/10.1109/icnc.2007.728
10 https://doi.org/10.1287/mksc.1090.0502
11 https://doi.org/10.1287/mksc.2015.0963
12 https://doi.org/10.1509/jmkg.69.2.84.60760
13 https://doi.org/10.1509/jmkr.2005.42.4.415
14 https://doi.org/10.5220/0006425300670074
15 schema:datePublished 2018
16 schema:datePublishedReg 2018-01-01
17 schema:description Customers with prepaid lines possess higher attrition risk compared to postpaid customers, since prepaid customers do not sign long-term obligatory contracts and may churn anytime. For this reason, mobile operators have to offer engaging benefits to keep prepaid subscribers with the company. Since all such offers incur additional cost, mobile operators face an optimization problem while selecting the most suitable offers for customers at risk. In this study, an offer management framework targeting prepaid customers of a telecommunication company is developed. Proposed framework chooses the most suitable offer for each customer through a mathematical model, which utilizes customer lifetime value and churn risk. Lifetime values are estimated using logistic regression and Pareto/NBD models, and several variants of these models are used to predict churn risks using a large number of customer specific features.
18 schema:editor N4c0a2aea949244ea8a1bf33186783d7d
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nd9f1e45036cd49a188108ceeeb9f4e43
23 schema:name A Mathematical Model for Customer Lifetime Value Based Offer Management
24 schema:pagination 27-45
25 schema:productId N3b53de4b58bf41d095adf4f78da9f617
26 N536a0ccbb85b4204b4969840a8daefc4
27 N951b18fe26054e2b906e89d7c4ff0ab2
28 schema:publisher N66df4e7fddc846b09d04baff5d424316
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105220758
30 https://doi.org/10.1007/978-3-319-94809-6_2
31 schema:sdDatePublished 2019-04-15T11:54
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N7aff3ef257f842b282aaaf4b3e3c3117
34 schema:url http://link.springer.com/10.1007/978-3-319-94809-6_2
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N096258d522e4447c95bf0b28f999b8ae rdf:first sg:person.013564607662.67
39 rdf:rest N8e0382d1c98c488891b10b2bcfff6b27
40 N3b53de4b58bf41d095adf4f78da9f617 schema:name dimensions_id
41 schema:value pub.1105220758
42 rdf:type schema:PropertyValue
43 N4c0a2aea949244ea8a1bf33186783d7d rdf:first Ne3f862c251db4ff58dc0fc3c59c8b95e
44 rdf:rest Naaeb00276ef34190a6beca2eb9270d0e
45 N536a0ccbb85b4204b4969840a8daefc4 schema:name readcube_id
46 schema:value de60316543bcd565a1cce2ce1fba8824ad85db9e86645df570dbb2be2de2c1bd
47 rdf:type schema:PropertyValue
48 N66df4e7fddc846b09d04baff5d424316 schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 N6aabcbc37980419789260356e8696fef rdf:first N9dda85ed05b84771a651d38def23f63e
52 rdf:rest rdf:nil
53 N7aff3ef257f842b282aaaf4b3e3c3117 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N8e0382d1c98c488891b10b2bcfff6b27 rdf:first sg:person.013160555733.95
56 rdf:rest rdf:nil
57 N951b18fe26054e2b906e89d7c4ff0ab2 schema:name doi
58 schema:value 10.1007/978-3-319-94809-6_2
59 rdf:type schema:PropertyValue
60 N9dda85ed05b84771a651d38def23f63e schema:familyName Quix
61 schema:givenName Christoph
62 rdf:type schema:Person
63 Naaeb00276ef34190a6beca2eb9270d0e rdf:first Nb138c8cd153b485cb861ff4dc4285d94
64 rdf:rest N6aabcbc37980419789260356e8696fef
65 Nb138c8cd153b485cb861ff4dc4285d94 schema:familyName Bernardino
66 schema:givenName Jorge
67 rdf:type schema:Person
68 Nd9f1e45036cd49a188108ceeeb9f4e43 schema:isbn 978-3-319-94808-9
69 978-3-319-94809-6
70 schema:name Data Management Technologies and Applications
71 rdf:type schema:Book
72 Ne3f862c251db4ff58dc0fc3c59c8b95e schema:familyName Filipe
73 schema:givenName Joaquim
74 rdf:type schema:Person
75 Nf42555789b984a64a38993e8f8a1c28a rdf:first Nfc02fa11190349098b8c7c878cb194c9
76 rdf:rest N096258d522e4447c95bf0b28f999b8ae
77 Nfc02fa11190349098b8c7c878cb194c9 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
78 schema:familyName Şahin
79 schema:givenName Ahmet
80 rdf:type schema:Person
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
85 schema:name Applied Mathematics
86 rdf:type schema:DefinedTerm
87 sg:person.013160555733.95 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
88 schema:familyName Albey
89 schema:givenName Erinc
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160555733.95
91 rdf:type schema:Person
92 sg:person.013564607662.67 schema:affiliation https://www.grid.ac/institutes/grid.28009.33
93 schema:familyName Can
94 schema:givenName Zehra
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564607662.67
96 rdf:type schema:Person
97 sg:pub.10.1186/s40165-015-0014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030750238
98 https://doi.org/10.1186/s40165-015-0014-6
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.eswa.2011.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033876095
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jbusres.2016.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025634288
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.procs.2010.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020446223
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1108/k-04-2015-0113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029394335
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/icnc.2007.728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094329663
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1287/mksc.1090.0502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064712977
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1287/mksc.2015.0963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064713739
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1509/jmkg.69.2.84.60760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031624869
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1509/jmkr.2005.42.4.415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039725941
117 rdf:type schema:CreativeWork
118 https://doi.org/10.5220/0006425300670074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096020441
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.28009.33 schema:alternateName Özyeğin University
121 schema:name Ozyegin University
122 Turkcell Technology Research and Development Inc
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...