Chaotic Time Series for Copper’s Price Forecast View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-07-03

AUTHORS

Raúl Carrasco , Manuel Vargas , Ismael Soto , Diego Fuentealba , Leonardo Banguera , Guillermo Fuertes

ABSTRACT

We investigated the potential of Artificial Neural Networks (ANN), ANN to forecasts in chaotic series of the price of copper; based on different combinations of structure and possibilities of knowledge in big discovery data. Two neural network models were built to predict the price of copper of the London Metal Exchange (LME) with lots of 100 to 1000 data. We used the Feed Forward Neural Network (FFNN) algorithm and Cascade Forward Neural Network (CFNN) combining training, transfer and performance implemented functions in MatLab. The main findings support the use of the ANN in financial forecasts in series of copper prices. The copper price’s forecast using different batches size of data can be improved by changing the number of neurons, functions of transfer, and functions of performance s. In addition, a negative correlation of −0.79 was found in performance indicators using RMS and IA. More... »

PAGES

278-288

References to SciGraph publications

  • 2015. A Meta-heuristic Approach for Copper Price Forecasting in INFORMATION AND KNOWLEDGE MANAGEMENT IN COMPLEX SYSTEMS
  • Book

    TITLE

    Digitalisation, Innovation, and Transformation

    ISBN

    978-3-319-94540-8
    978-3-319-94541-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-94541-5_28

    DOI

    http://dx.doi.org/10.1007/978-3-319-94541-5_28

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105275124


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad Bernardo O'Higgins", 
              "id": "https://www.grid.ac/institutes/grid.440625.1", 
              "name": [
                "Facultad de Administraci\u00f3n y Econom\u00eda, Universidad de Santiago de Chile, 9170022, Santiago, Chile", 
                "Facultad de Ingenier\u00eda, Ciencia y Tecnolog\u00eda, Universidad Bernardo O\u2019Higgins, 8370993, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carrasco", 
            "givenName": "Ra\u00fal", 
            "id": "sg:person.011663650417.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011663650417.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Santiago Chile", 
              "id": "https://www.grid.ac/institutes/grid.412179.8", 
              "name": [
                "Departamento de Ingenier\u00eda Industrial, Universidad San Sebasti\u00e1n, 8420524, Santiago, Chile", 
                "Departamento de Ingenier\u00eda Industrial, Universidad de Santiago de Chile, 9170124, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vargas", 
            "givenName": "Manuel", 
            "id": "sg:person.010566333205.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566333205.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Santiago Chile", 
              "id": "https://www.grid.ac/institutes/grid.412179.8", 
              "name": [
                "Departamento de Ingenier\u00eda El\u00e9ctrica, Universidad de Santiago de Chile, 9170124, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soto", 
            "givenName": "Ismael", 
            "id": "sg:person.014027736773.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027736773.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Reading", 
              "id": "https://www.grid.ac/institutes/grid.9435.b", 
              "name": [
                "Informatics Research Centre, University of Reading, Reading, UK", 
                "School of Informatics and Telecommunications, Universidad Tecnol\u00f3gica de Chile-INACAP, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuentealba", 
            "givenName": "Diego", 
            "id": "sg:person.012605522737.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605522737.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Guayaquil", 
              "id": "https://www.grid.ac/institutes/grid.442157.1", 
              "name": [
                "Department of Industrial Engineering, University of Guayaquil, Guayaquil, Ecuador"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banguera", 
            "givenName": "Leonardo", 
            "id": "sg:person.011653167314.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653167314.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Santiago Chile", 
              "id": "https://www.grid.ac/institutes/grid.412179.8", 
              "name": [
                "Departamento de Ingenier\u00eda Industrial, Universidad de Santiago de Chile, 9170124, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuertes", 
            "givenName": "Guillermo", 
            "id": "sg:person.016474024005.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474024005.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.irfa.2006.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005676420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-16274-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007045946", 
              "https://doi.org/10.1007/978-3-319-16274-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-16274-4_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007045946", 
              "https://doi.org/10.1007/978-3-319-16274-4_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2005.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012155952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2005.08.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012155952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2013.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012268518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2013.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013119530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-8454.12008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015520685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.1994.0099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023484715"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023791882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csi.2008.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025074136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2010.07.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029869690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2015.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036545687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2015.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037490896"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4067/s0718-33052011000300007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037984829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-385889-4.00005-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039535742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-411461-6.00006-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047855827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.resourpol.2009.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048408427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/fut.20459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052090727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/fut.20459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052090727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tla.2015.7164223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061664500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.15837/ijccc.2017.1.2784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083723521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icitm.2018.8333979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103274643"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-03", 
        "datePublishedReg": "2018-07-03", 
        "description": "We investigated the potential of Artificial Neural Networks (ANN), ANN to forecasts in chaotic series of the price of copper; based on different combinations of structure and possibilities of knowledge in big discovery data. Two neural network models were built to predict the price of copper of the London Metal Exchange (LME) with lots of 100 to 1000 data. We used the Feed Forward Neural Network (FFNN) algorithm and Cascade Forward Neural Network (CFNN) combining training, transfer and performance implemented functions in MatLab. The main findings support the use of the ANN in financial forecasts in series of copper prices. The copper price\u2019s forecast using different batches size of data can be improved by changing the number of neurons, functions of transfer, and functions of performance s. In addition, a negative correlation of \u22120.79 was found in performance indicators using RMS and IA.", 
        "editor": [
          {
            "familyName": "Liu", 
            "givenName": "Kecheng", 
            "type": "Person"
          }, 
          {
            "familyName": "Nakata", 
            "givenName": "Keiichi", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Weizi", 
            "type": "Person"
          }, 
          {
            "familyName": "Baranauskas", 
            "givenName": "Cecilia", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-94541-5_28", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-94540-8", 
            "978-3-319-94541-5"
          ], 
          "name": "Digitalisation, Innovation, and Transformation", 
          "type": "Book"
        }, 
        "name": "Chaotic Time Series for Copper\u2019s Price Forecast", 
        "pagination": "278-288", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-94541-5_28"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6d83561ba0d01ab4ee8b1cd0269f5e41491c1914289c2aa36586246293b6c411"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105275124"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-94541-5_28", 
          "https://app.dimensions.ai/details/publication/pub.1105275124"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100801_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-94541-5_28"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94541-5_28'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94541-5_28'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94541-5_28'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94541-5_28'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      23 PREDICATES      46 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-94541-5_28 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5b6f7df27439417bba1c785c4d835b5c
    4 schema:citation sg:pub.10.1007/978-3-319-16274-4_16
    5 https://doi.org/10.1002/fut.20459
    6 https://doi.org/10.1016/b978-0-12-385889-4.00005-3
    7 https://doi.org/10.1016/b978-0-12-411461-6.00006-x
    8 https://doi.org/10.1016/j.csi.2008.03.002
    9 https://doi.org/10.1016/j.eswa.2013.12.011
    10 https://doi.org/10.1016/j.irfa.2006.04.001
    11 https://doi.org/10.1016/j.knosys.2015.02.010
    12 https://doi.org/10.1016/j.resourpol.2005.08.007
    13 https://doi.org/10.1016/j.resourpol.2009.02.001
    14 https://doi.org/10.1016/j.resourpol.2010.07.004
    15 https://doi.org/10.1016/j.resourpol.2013.09.007
    16 https://doi.org/10.1016/j.resourpol.2013.10.005
    17 https://doi.org/10.1016/j.resourpol.2015.03.004
    18 https://doi.org/10.1098/rsta.1994.0099
    19 https://doi.org/10.1109/icitm.2018.8333979
    20 https://doi.org/10.1109/tla.2015.7164223
    21 https://doi.org/10.1111/1467-8454.12008
    22 https://doi.org/10.15837/ijccc.2017.1.2784
    23 https://doi.org/10.4067/s0718-33052011000300007
    24 schema:datePublished 2018-07-03
    25 schema:datePublishedReg 2018-07-03
    26 schema:description We investigated the potential of Artificial Neural Networks (ANN), ANN to forecasts in chaotic series of the price of copper; based on different combinations of structure and possibilities of knowledge in big discovery data. Two neural network models were built to predict the price of copper of the London Metal Exchange (LME) with lots of 100 to 1000 data. We used the Feed Forward Neural Network (FFNN) algorithm and Cascade Forward Neural Network (CFNN) combining training, transfer and performance implemented functions in MatLab. The main findings support the use of the ANN in financial forecasts in series of copper prices. The copper price’s forecast using different batches size of data can be improved by changing the number of neurons, functions of transfer, and functions of performance s. In addition, a negative correlation of −0.79 was found in performance indicators using RMS and IA.
    27 schema:editor N36ab6267e97943a59c99d805a882fbfc
    28 schema:genre chapter
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N78ec6ee1a6a948b4873059a823670980
    32 schema:name Chaotic Time Series for Copper’s Price Forecast
    33 schema:pagination 278-288
    34 schema:productId N27cddd504da74eb8b780a3eab65f7da7
    35 Na363768dfde044e59fe8af27fdfad4c7
    36 Nc3dc643681ff4ed4a489ef5752e9c30e
    37 schema:publisher Na833c8a3d7b34d3195be388cdfae33ae
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105275124
    39 https://doi.org/10.1007/978-3-319-94541-5_28
    40 schema:sdDatePublished 2019-04-16T05:01
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nc74b4637c15146f7ac5ec3c19922f9f5
    43 schema:url https://link.springer.com/10.1007%2F978-3-319-94541-5_28
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset chapters
    46 rdf:type schema:Chapter
    47 N0664f7088fac45bb8f0a66481cf8f28a schema:familyName Liu
    48 schema:givenName Kecheng
    49 rdf:type schema:Person
    50 N098c9045232346f3b9c4d3d9bf41f5fa schema:familyName Nakata
    51 schema:givenName Keiichi
    52 rdf:type schema:Person
    53 N0f0ccaa44df349a4be6be92319f4b0c7 rdf:first sg:person.010566333205.63
    54 rdf:rest Ne7f7e2a3fcfd47f1ab236e51193d718e
    55 N27cddd504da74eb8b780a3eab65f7da7 schema:name readcube_id
    56 schema:value 6d83561ba0d01ab4ee8b1cd0269f5e41491c1914289c2aa36586246293b6c411
    57 rdf:type schema:PropertyValue
    58 N36ab6267e97943a59c99d805a882fbfc rdf:first N0664f7088fac45bb8f0a66481cf8f28a
    59 rdf:rest Nb087916e68624e0bb8c618c04ad7f1f9
    60 N46602b2b571a4e8998d5dbb87e521f11 rdf:first sg:person.016474024005.78
    61 rdf:rest rdf:nil
    62 N5b6f7df27439417bba1c785c4d835b5c rdf:first sg:person.011663650417.19
    63 rdf:rest N0f0ccaa44df349a4be6be92319f4b0c7
    64 N78ec6ee1a6a948b4873059a823670980 schema:isbn 978-3-319-94540-8
    65 978-3-319-94541-5
    66 schema:name Digitalisation, Innovation, and Transformation
    67 rdf:type schema:Book
    68 Na363768dfde044e59fe8af27fdfad4c7 schema:name doi
    69 schema:value 10.1007/978-3-319-94541-5_28
    70 rdf:type schema:PropertyValue
    71 Na65578009a15456eb33983fea75d37cb schema:familyName Li
    72 schema:givenName Weizi
    73 rdf:type schema:Person
    74 Na7eecd336372419db2a280367504f3ec rdf:first Ne7bbd20f834646fc8ca4c1e1c6e2d578
    75 rdf:rest rdf:nil
    76 Na833c8a3d7b34d3195be388cdfae33ae schema:location Cham
    77 schema:name Springer International Publishing
    78 rdf:type schema:Organisation
    79 Nb087916e68624e0bb8c618c04ad7f1f9 rdf:first N098c9045232346f3b9c4d3d9bf41f5fa
    80 rdf:rest Nb190728e385c4663857b7f42b05a8120
    81 Nb190728e385c4663857b7f42b05a8120 rdf:first Na65578009a15456eb33983fea75d37cb
    82 rdf:rest Na7eecd336372419db2a280367504f3ec
    83 Nc3dc643681ff4ed4a489ef5752e9c30e schema:name dimensions_id
    84 schema:value pub.1105275124
    85 rdf:type schema:PropertyValue
    86 Nc74b4637c15146f7ac5ec3c19922f9f5 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Nca3d01c0736548509107ba18ca33c0ef rdf:first sg:person.012605522737.76
    89 rdf:rest Nf2b4b21032b14e6da5cfd9329cfe2bfa
    90 Ne7bbd20f834646fc8ca4c1e1c6e2d578 schema:familyName Baranauskas
    91 schema:givenName Cecilia
    92 rdf:type schema:Person
    93 Ne7f7e2a3fcfd47f1ab236e51193d718e rdf:first sg:person.014027736773.69
    94 rdf:rest Nca3d01c0736548509107ba18ca33c0ef
    95 Nf2b4b21032b14e6da5cfd9329cfe2bfa rdf:first sg:person.011653167314.42
    96 rdf:rest N46602b2b571a4e8998d5dbb87e521f11
    97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Information and Computing Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Artificial Intelligence and Image Processing
    102 rdf:type schema:DefinedTerm
    103 sg:person.010566333205.63 schema:affiliation https://www.grid.ac/institutes/grid.412179.8
    104 schema:familyName Vargas
    105 schema:givenName Manuel
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010566333205.63
    107 rdf:type schema:Person
    108 sg:person.011653167314.42 schema:affiliation https://www.grid.ac/institutes/grid.442157.1
    109 schema:familyName Banguera
    110 schema:givenName Leonardo
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011653167314.42
    112 rdf:type schema:Person
    113 sg:person.011663650417.19 schema:affiliation https://www.grid.ac/institutes/grid.440625.1
    114 schema:familyName Carrasco
    115 schema:givenName Raúl
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011663650417.19
    117 rdf:type schema:Person
    118 sg:person.012605522737.76 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
    119 schema:familyName Fuentealba
    120 schema:givenName Diego
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012605522737.76
    122 rdf:type schema:Person
    123 sg:person.014027736773.69 schema:affiliation https://www.grid.ac/institutes/grid.412179.8
    124 schema:familyName Soto
    125 schema:givenName Ismael
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014027736773.69
    127 rdf:type schema:Person
    128 sg:person.016474024005.78 schema:affiliation https://www.grid.ac/institutes/grid.412179.8
    129 schema:familyName Fuertes
    130 schema:givenName Guillermo
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016474024005.78
    132 rdf:type schema:Person
    133 sg:pub.10.1007/978-3-319-16274-4_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007045946
    134 https://doi.org/10.1007/978-3-319-16274-4_16
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1002/fut.20459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052090727
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/b978-0-12-385889-4.00005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039535742
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/b978-0-12-411461-6.00006-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047855827
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.csi.2008.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025074136
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.eswa.2013.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023791882
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.irfa.2006.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005676420
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.knosys.2015.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037490896
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.resourpol.2005.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012155952
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.resourpol.2009.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048408427
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.resourpol.2010.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029869690
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.resourpol.2013.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013119530
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.resourpol.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012268518
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.resourpol.2015.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036545687
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1098/rsta.1994.0099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023484715
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/icitm.2018.8333979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103274643
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/tla.2015.7164223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061664500
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1111/1467-8454.12008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015520685
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.15837/ijccc.2017.1.2784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083723521
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.4067/s0718-33052011000300007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037984829
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.412179.8 schema:alternateName University of Santiago Chile
    175 schema:name Departamento de Ingeniería Eléctrica, Universidad de Santiago de Chile, 9170124, Santiago, Chile
    176 Departamento de Ingeniería Industrial, Universidad San Sebastián, 8420524, Santiago, Chile
    177 Departamento de Ingeniería Industrial, Universidad de Santiago de Chile, 9170124, Santiago, Chile
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.440625.1 schema:alternateName Universidad Bernardo O'Higgins
    180 schema:name Facultad de Administración y Economía, Universidad de Santiago de Chile, 9170022, Santiago, Chile
    181 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, 8370993, Santiago, Chile
    182 rdf:type schema:Organization
    183 https://www.grid.ac/institutes/grid.442157.1 schema:alternateName University of Guayaquil
    184 schema:name Department of Industrial Engineering, University of Guayaquil, Guayaquil, Ecuador
    185 rdf:type schema:Organization
    186 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
    187 schema:name Informatics Research Centre, University of Reading, Reading, UK
    188 School of Informatics and Telecommunications, Universidad Tecnológica de Chile-INACAP, Santiago, Chile
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...