Automatic Video Editing: Original Tracking Method Applied to Basketball Players in Video Sequences View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Colin Le Nost , Florent Lefevre , Vincent Bombardier , Patrick Charpentier , Nicolas Krommenacker , Bertrand Petat

ABSTRACT

The main task here is to track several basketball players during a game and to be able to retrieve their whole trajectories at the end. The final application is to get some statistics about each players and to identify some special events like free throw or to determine when a counterattack is going to happen. The originality of the solution states in the way the tracking is performed: instead of studying the close environment of each player, all the players are detected on each frame then we are using specific informations like background, speed vector, color or distance between players to link player’s positions and create the whole trajectories. We will compare our results with a benchmark of algorithms to see that our solution is quite efficient in term of tracking and speed. More... »

PAGES

117-126

Book

TITLE

Image and Signal Processing

ISBN

978-3-319-94210-0
978-3-319-94211-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-94211-7_14

DOI

http://dx.doi.org/10.1007/978-3-319-94211-7_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105216523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Nationale Sup\u00e9rieure des Mines de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.473477.4", 
          "name": [
            "Ecole Nationale Sup\u00e9rieure des Mines de Nancy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Nost", 
        "givenName": "Colin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, CRAN", 
            "CitizenCam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lefevre", 
        "givenName": "Florent", 
        "id": "sg:person.011221451746.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221451746.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, CRAN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bombardier", 
        "givenName": "Vincent", 
        "id": "sg:person.016343171764.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343171764.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, CRAN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charpentier", 
        "givenName": "Patrick", 
        "id": "sg:person.010601543305.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010601543305.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, CRAN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krommenacker", 
        "givenName": "Nicolas", 
        "id": "sg:person.013233420061.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233420061.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CitizenCam"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petat", 
        "givenName": "Bertrand", 
        "id": "sg:person.014207353746.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207353746.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0734-189x(85)90016-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002019535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0913-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011357239", 
          "https://doi.org/10.1007/978-1-4615-0913-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33765-9_50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039884592", 
          "https://doi.org/10.1007/978-3-642-33765-9_50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046546824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20167604031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057037452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2016.2566811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2014.2345390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094176162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/avss.2005.1577318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095547055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2010.675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095608686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.20.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099325873"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "The main task here is to track several basketball players during a game and to be able to retrieve their whole trajectories at the end. The final application is to get some statistics about each players and to identify some special events like free throw or to determine when a counterattack is going to happen. The originality of the solution states in the way the tracking is performed: instead of studying the close environment of each player, all the players are detected on each frame then we are using specific informations like background, speed vector, color or distance between players to link player\u2019s positions and create the whole trajectories. We will compare our results with a benchmark of algorithms to see that our solution is quite efficient in term of tracking and speed.", 
    "editor": [
      {
        "familyName": "Mansouri", 
        "givenName": "Alamin", 
        "type": "Person"
      }, 
      {
        "familyName": "El Moataz", 
        "givenName": "Abderrahim", 
        "type": "Person"
      }, 
      {
        "familyName": "Nouboud", 
        "givenName": "Fathallah", 
        "type": "Person"
      }, 
      {
        "familyName": "Mammass", 
        "givenName": "Driss", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-94211-7_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-94210-0", 
        "978-3-319-94211-7"
      ], 
      "name": "Image and Signal Processing", 
      "type": "Book"
    }, 
    "name": "Automatic Video Editing: Original Tracking Method Applied to Basketball Players in Video Sequences", 
    "pagination": "117-126", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-94211-7_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "93018c69f3b75cecb04bb28fcf49ef75ec2266772bd8cd3006a8b92df14d23e3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105216523"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-94211-7_14", 
      "https://app.dimensions.ai/details/publication/pub.1105216523"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-94211-7_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94211-7_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94211-7_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94211-7_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94211-7_14'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-94211-7_14 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N5e1e73f86bb54449ac804cd70b65e433
4 schema:citation sg:pub.10.1007/978-1-4615-0913-4_11
5 sg:pub.10.1007/978-3-642-33765-9_50
6 https://doi.org/10.1016/0734-189x(85)90016-7
7 https://doi.org/10.1051/matecconf/20167604031
8 https://doi.org/10.1109/avss.2005.1577318
9 https://doi.org/10.1109/cvpr.2009.5206737
10 https://doi.org/10.1109/icpr.2010.675
11 https://doi.org/10.1109/tfuzz.2016.2566811
12 https://doi.org/10.1109/tpami.2011.239
13 https://doi.org/10.1109/tpami.2014.2345390
14 https://doi.org/10.1145/1143844.1143874
15 https://doi.org/10.5244/c.20.6
16 schema:datePublished 2018
17 schema:datePublishedReg 2018-01-01
18 schema:description The main task here is to track several basketball players during a game and to be able to retrieve their whole trajectories at the end. The final application is to get some statistics about each players and to identify some special events like free throw or to determine when a counterattack is going to happen. The originality of the solution states in the way the tracking is performed: instead of studying the close environment of each player, all the players are detected on each frame then we are using specific informations like background, speed vector, color or distance between players to link player’s positions and create the whole trajectories. We will compare our results with a benchmark of algorithms to see that our solution is quite efficient in term of tracking and speed.
19 schema:editor Nd0bd0ccc963b48b8bd86c1801bd42dc1
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Ne998cad8e942453aad2e0975e73a0760
24 schema:name Automatic Video Editing: Original Tracking Method Applied to Basketball Players in Video Sequences
25 schema:pagination 117-126
26 schema:productId N6271546d75cd40839d79a7c9b1fd3399
27 Ncea6a4e3ff7d41989cf7a483ded7657b
28 Nd0703ca03a4d4f6f9aaaa99eac2d9b9b
29 schema:publisher N7549d40cb2e348d48bac71317b1e288f
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105216523
31 https://doi.org/10.1007/978-3-319-94211-7_14
32 schema:sdDatePublished 2019-04-15T20:45
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nfa3f6584cc8043ceb05fc1909ad68db7
35 schema:url http://link.springer.com/10.1007/978-3-319-94211-7_14
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N063a35a83fcb45ab805106b0d2faaf3b rdf:first sg:person.013233420061.88
40 rdf:rest Ne73a336db4a24e60bbaee3007111fb56
41 N0988918aa33a4b39b00b9451379ead9b schema:name CitizenCam
42 Université de Lorraine, CNRS, CRAN
43 rdf:type schema:Organization
44 N10b7444bdb6143fbbc6c3416c5f199de rdf:first sg:person.010601543305.09
45 rdf:rest N063a35a83fcb45ab805106b0d2faaf3b
46 N2b6c1da44d9e41afbb64e172e8161b24 rdf:first sg:person.016343171764.84
47 rdf:rest N10b7444bdb6143fbbc6c3416c5f199de
48 N33a41c8e36fc4f20914cfe0e41a6cb3f schema:familyName El Moataz
49 schema:givenName Abderrahim
50 rdf:type schema:Person
51 N39632c66275a42ed9652ba28da19c6e7 schema:familyName Mansouri
52 schema:givenName Alamin
53 rdf:type schema:Person
54 N402d7ff0632d49488f96fa555c4c55c7 schema:name Université de Lorraine, CNRS, CRAN
55 rdf:type schema:Organization
56 N47434a16ffc941dab4415b240071884c rdf:first N33a41c8e36fc4f20914cfe0e41a6cb3f
57 rdf:rest Ndf9671d910814db78d1f8c0727851c71
58 N5e1e73f86bb54449ac804cd70b65e433 rdf:first Nd6fa73f948874593867770ef46671be7
59 rdf:rest N82c67640978c4240b7e16cf38054b1f0
60 N6271546d75cd40839d79a7c9b1fd3399 schema:name readcube_id
61 schema:value 93018c69f3b75cecb04bb28fcf49ef75ec2266772bd8cd3006a8b92df14d23e3
62 rdf:type schema:PropertyValue
63 N6b20e70814964b618d6f36c1dd006892 schema:familyName Mammass
64 schema:givenName Driss
65 rdf:type schema:Person
66 N7549d40cb2e348d48bac71317b1e288f schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 N82c67640978c4240b7e16cf38054b1f0 rdf:first sg:person.011221451746.23
70 rdf:rest N2b6c1da44d9e41afbb64e172e8161b24
71 N8c2b8c1ad66c4dbb86d793b5009bb79e schema:name Université de Lorraine, CNRS, CRAN
72 rdf:type schema:Organization
73 N93bacde4087b40afb9cfc21b86b0586e schema:familyName Nouboud
74 schema:givenName Fathallah
75 rdf:type schema:Person
76 Nb88762f3d4654940b9f473b484c61443 rdf:first N6b20e70814964b618d6f36c1dd006892
77 rdf:rest rdf:nil
78 Nbce2bf3b6230424f95bdf1c86b35a27b schema:name Université de Lorraine, CNRS, CRAN
79 rdf:type schema:Organization
80 Ncea6a4e3ff7d41989cf7a483ded7657b schema:name dimensions_id
81 schema:value pub.1105216523
82 rdf:type schema:PropertyValue
83 Nd0703ca03a4d4f6f9aaaa99eac2d9b9b schema:name doi
84 schema:value 10.1007/978-3-319-94211-7_14
85 rdf:type schema:PropertyValue
86 Nd0bd0ccc963b48b8bd86c1801bd42dc1 rdf:first N39632c66275a42ed9652ba28da19c6e7
87 rdf:rest N47434a16ffc941dab4415b240071884c
88 Nd6fa73f948874593867770ef46671be7 schema:affiliation https://www.grid.ac/institutes/grid.473477.4
89 schema:familyName Le Nost
90 schema:givenName Colin
91 rdf:type schema:Person
92 Ndf9671d910814db78d1f8c0727851c71 rdf:first N93bacde4087b40afb9cfc21b86b0586e
93 rdf:rest Nb88762f3d4654940b9f473b484c61443
94 Ne73a336db4a24e60bbaee3007111fb56 rdf:first sg:person.014207353746.53
95 rdf:rest rdf:nil
96 Ne998cad8e942453aad2e0975e73a0760 schema:isbn 978-3-319-94210-0
97 978-3-319-94211-7
98 schema:name Image and Signal Processing
99 rdf:type schema:Book
100 Nec66faa675a64fd084bf1aa1f80a90fa schema:name CitizenCam
101 rdf:type schema:Organization
102 Nfa3f6584cc8043ceb05fc1909ad68db7 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
108 schema:name Statistics
109 rdf:type schema:DefinedTerm
110 sg:person.010601543305.09 schema:affiliation N402d7ff0632d49488f96fa555c4c55c7
111 schema:familyName Charpentier
112 schema:givenName Patrick
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010601543305.09
114 rdf:type schema:Person
115 sg:person.011221451746.23 schema:affiliation N0988918aa33a4b39b00b9451379ead9b
116 schema:familyName Lefevre
117 schema:givenName Florent
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011221451746.23
119 rdf:type schema:Person
120 sg:person.013233420061.88 schema:affiliation N8c2b8c1ad66c4dbb86d793b5009bb79e
121 schema:familyName Krommenacker
122 schema:givenName Nicolas
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233420061.88
124 rdf:type schema:Person
125 sg:person.014207353746.53 schema:affiliation Nec66faa675a64fd084bf1aa1f80a90fa
126 schema:familyName Petat
127 schema:givenName Bertrand
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207353746.53
129 rdf:type schema:Person
130 sg:person.016343171764.84 schema:affiliation Nbce2bf3b6230424f95bdf1c86b35a27b
131 schema:familyName Bombardier
132 schema:givenName Vincent
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343171764.84
134 rdf:type schema:Person
135 sg:pub.10.1007/978-1-4615-0913-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011357239
136 https://doi.org/10.1007/978-1-4615-0913-4_11
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-642-33765-9_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039884592
139 https://doi.org/10.1007/978-3-642-33765-9_50
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0734-189x(85)90016-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002019535
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1051/matecconf/20167604031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057037452
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/avss.2005.1577318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095547055
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/cvpr.2009.5206737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094176162
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/icpr.2010.675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095608686
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/tfuzz.2016.2566811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607155
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tpami.2011.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744121
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpami.2014.2345390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744716
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/1143844.1143874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046546824
158 rdf:type schema:CreativeWork
159 https://doi.org/10.5244/c.20.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099325873
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.473477.4 schema:alternateName École Nationale Supérieure des Mines de Nancy
162 schema:name Ecole Nationale Supérieure des Mines de Nancy
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...