2019
AUTHORSSamad Barri Khojasteh , José R. Villar , Enrique de la Cal , Víctor M. González , Javier Sedano
ABSTRACTThis study focuses on the performance of a fall detection method using data coming from real falls performed by relatively young people and the application of this technique in the case of an elder person. Although the vast majority of studies concerning fall detection place the sensory on the waist, in this research the wearable device must be placed on the wrist because it’s usability. A first pre-processing stage is carried out as stated in [1, 17]; this stage detects the most relevant points to label. This study analyzes the suitability of different models in solving this classification problem: a feed-forward Neural Network and a rule based system generated with the C5.0 algorithm. A discussion about the results and the deployment issues is included. More... »
PAGES334-343
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18
ISBN
978-3-319-94119-6
978-3-319-94120-2
http://scigraph.springernature.com/pub.10.1007/978-3-319-94120-2_32
DOIhttp://dx.doi.org/10.1007/978-3-319-94120-2_32
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1104402727
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"Sakarya University",
"University of Oviedo"
],
"type": "Organization"
},
"familyName": "Khojasteh",
"givenName": "Samad Barri",
"id": "sg:person.011773710511.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011773710511.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"University of Oviedo"
],
"type": "Organization"
},
"familyName": "Villar",
"givenName": "Jos\u00e9 R.",
"id": "sg:person.015655732472.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655732472.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"University of Oviedo"
],
"type": "Organization"
},
"familyName": "de la Cal",
"givenName": "Enrique",
"id": "sg:person.016056436767.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016056436767.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Oviedo",
"id": "https://www.grid.ac/institutes/grid.10863.3c",
"name": [
"University of Oviedo"
],
"type": "Organization"
},
"familyName": "Gonz\u00e1lez",
"givenName": "V\u00edctor M.",
"id": "sg:person.010561077304.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010561077304.83"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Instituto Tecnol\u00f3gico de Castilla y Le\u00f3n"
],
"type": "Organization"
},
"familyName": "Sedano",
"givenName": "Javier",
"id": "sg:person.012345130667.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012345130667.82"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.gaitpost.2006.09.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000173630"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.medengphy.2015.06.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004226987"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pmcj.2012.08.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014984440"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.gaitpost.2008.01.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017254110"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5772/13802",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017876154"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.proeng.2014.10.539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019363857"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-37258-5_104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020529755",
"https://doi.org/10.1007/978-3-540-37258-5_104"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2015.01.082",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027750973"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.bios.2016.12.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028916265"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3390/s141019806",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029749402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2015/576364",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035575962"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2015/452078",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036922370"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1475-925x-12-66",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042512103",
"https://doi.org/10.1186/1475-925x-12-66"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-40846-5_66",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048142676",
"https://doi.org/10.1007/978-3-642-40846-5_66"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/jsen.2016.2625099",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061325379"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnsre.2010.2070807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061740493"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnsre.2015.2460373",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061741009"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0129065714500361",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062899424"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.procs.2017.01.188",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084103257"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.procs.2017.06.110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090655356"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2017/3090343",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090829740"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2017/6043069",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090904684"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.autcon.2017.09.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091882840"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ismict.2012.6203028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095580415"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1613/jair.953",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1105579550"
],
"type": "CreativeWork"
}
],
"datePublished": "2019",
"datePublishedReg": "2019-01-01",
"description": "This study focuses on the performance of a fall detection method using data coming from real falls performed by relatively young people and the application of this technique in the case of an elder person. Although the vast majority of studies concerning fall detection place the sensory on the waist, in this research the wearable device must be placed on the wrist because it\u2019s usability. A first pre-processing stage is carried out as stated in [1, 17]; this stage detects the most relevant points to label. This study analyzes the suitability of different models in solving this classification problem: a feed-forward Neural Network and a rule based system generated with the C5.0 algorithm. A discussion about the results and the deployment issues is included.",
"editor": [
{
"familyName": "Gra\u00f1a",
"givenName": "Manuel",
"type": "Person"
},
{
"familyName": "L\u00f3pez-Guede",
"givenName": "Jos\u00e9 Manuel",
"type": "Person"
},
{
"familyName": "Etxaniz",
"givenName": "Oier",
"type": "Person"
},
{
"familyName": "Herrero",
"givenName": "\u00c1lvaro",
"type": "Person"
},
{
"familyName": "S\u00e1ez",
"givenName": "Jos\u00e9 Antonio",
"type": "Person"
},
{
"familyName": "Quinti\u00e1n",
"givenName": "H\u00e9ctor",
"type": "Person"
},
{
"familyName": "Corchado",
"givenName": "Emilio",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-94120-2_32",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-94119-6",
"978-3-319-94120-2"
],
"name": "International Joint Conference SOCO\u201918-CISIS\u201918-ICEUTE\u201918",
"type": "Book"
},
"name": "Fall Detection Analysis Using a Real Fall Dataset",
"pagination": "334-343",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-94120-2_32"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6b535173a5c256d70a5b29699e8874fefe3a92403cf7fb76b45b466d09fb891e"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1104402727"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-94120-2_32",
"https://app.dimensions.ai/details/publication/pub.1104402727"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T13:11",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000604.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-94120-2_32"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94120-2_32'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94120-2_32'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94120-2_32'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-94120-2_32'
This table displays all metadata directly associated to this object as RDF triples.
204 TRIPLES
23 PREDICATES
52 URIs
20 LITERALS
8 BLANK NODES