Metallic Glasses View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Jean-Marc Pelletier , Jichao Qiao

ABSTRACT

Many industrial applications require materials with remarkable and sometimes contradictory properties. Let us mention a few examples. In the field of biomaterials (dental implants), micromechanics (gears) or in the field of jewelry or watches (luxury watches), a need is felt very clearly: That of materials that are both hard, wear resistant, biocompatible, possess a high yield strength, while being deformable. However, such ‘‘ideal'' materials do not exist at present, and hence the numerous ongoing research being reported in this field. Polymers are easy to use and deformable but not mechanically resistant; ceramics are very hard but often brittle, metals can be deformable but they are, in this case, characterized by ordinary mechanical properties.It is well known that metallic glasses have a great potential for industrial applications. In general, metallic glasses possess high strength, high elastic limits, excellent corrosion resistance, and thermoplastic formability compared to crystalline materials. This combination of structural and functional properties makes them potential candidates for applications where the use of conventional materials has reached a limit of effectiveness.This chapter addresses the history of bulk metallic glasses, their thermal stability, and their most attractive properties. Some examples of industrial applications are given. More... »

PAGES

617-643

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-93728-1_18

DOI

http://dx.doi.org/10.1007/978-3-319-93728-1_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1122410886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INSA-Lyon, MATEIS UMR 55140, University of Lyon, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "INSA-Lyon, MATEIS UMR 55140, University of Lyon, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pelletier", 
        "givenName": "Jean-Marc", 
        "id": "sg:person.0711612715.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711612715.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Jichao", 
        "id": "sg:person.0643477515.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643477515.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Many industrial applications require materials with remarkable and sometimes contradictory properties. Let us mention a\u00a0few examples. In the field of biomaterials (dental implants), micromechanics (gears) or in the field of jewelry or watches (luxury watches), a\u00a0need is felt very clearly: That of materials that are both hard, wear resistant, biocompatible, possess a\u00a0high yield strength, while being deformable. However, such \u2018\u2018ideal'' materials do not exist at present, and hence the numerous ongoing research being reported in this field. Polymers are easy to use and deformable but not mechanically resistant; ceramics are very hard but often brittle, metals can be deformable but they are, in this case, characterized by ordinary mechanical properties.It is well known that metallic glasses have a\u00a0great potential for industrial applications. In general, metallic glasses possess high strength, high elastic limits, excellent corrosion resistance, and thermoplastic formability compared to crystalline materials. This combination of structural and functional properties makes them potential candidates for applications where the use of conventional materials has reached a\u00a0limit of effectiveness.This chapter addresses the history of bulk metallic glasses, their thermal stability, and their most attractive properties. Some examples of industrial applications are given.", 
    "editor": [
      {
        "familyName": "Musgraves", 
        "givenName": "J. David", 
        "type": "Person"
      }, 
      {
        "familyName": "Hu", 
        "givenName": "Juejun", 
        "type": "Person"
      }, 
      {
        "familyName": "Calvez", 
        "givenName": "Laurent", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-93728-1_18", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-93726-7", 
        "978-3-319-93728-1"
      ], 
      "name": "Springer Handbook of Glass", 
      "type": "Book"
    }, 
    "keywords": [
      "metallic glasses", 
      "industrial applications", 
      "excellent corrosion resistance", 
      "high yield strength", 
      "high elastic limit", 
      "bulk metallic glass", 
      "field of biomaterials", 
      "corrosion resistance", 
      "yield strength", 
      "high strength", 
      "mechanical properties", 
      "thermoplastic formability", 
      "conventional materials", 
      "field of jewelry", 
      "elastic limit", 
      "thermal stability", 
      "crystalline materials", 
      "glass", 
      "attractive properties", 
      "materials", 
      "great potential", 
      "properties", 
      "formability", 
      "strength", 
      "applications", 
      "micromechanics", 
      "ceramics", 
      "potential candidate", 
      "contradictory properties", 
      "biomaterials", 
      "field", 
      "functional properties", 
      "polymers", 
      "metals", 
      "stability", 
      "limit", 
      "resistance", 
      "ongoing research", 
      "example", 
      "numerous ongoing research", 
      "effectiveness", 
      "candidates", 
      "potential", 
      "combination", 
      "use", 
      "limits of effectiveness", 
      "research", 
      "jewelry", 
      "cases", 
      "need", 
      "chapter", 
      "history"
    ], 
    "name": "Metallic Glasses", 
    "pagination": "617-643", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1122410886"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-93728-1_18"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-93728-1_18", 
      "https://app.dimensions.ai/details/publication/pub.1122410886"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_464.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-93728-1_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93728-1_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93728-1_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93728-1_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93728-1_18'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      22 PREDICATES      76 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-93728-1_18 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N84fc09a033a54ab98898c3298224fe6c
4 schema:datePublished 2019
5 schema:datePublishedReg 2019-01-01
6 schema:description Many industrial applications require materials with remarkable and sometimes contradictory properties. Let us mention a few examples. In the field of biomaterials (dental implants), micromechanics (gears) or in the field of jewelry or watches (luxury watches), a need is felt very clearly: That of materials that are both hard, wear resistant, biocompatible, possess a high yield strength, while being deformable. However, such ‘‘ideal'' materials do not exist at present, and hence the numerous ongoing research being reported in this field. Polymers are easy to use and deformable but not mechanically resistant; ceramics are very hard but often brittle, metals can be deformable but they are, in this case, characterized by ordinary mechanical properties.It is well known that metallic glasses have a great potential for industrial applications. In general, metallic glasses possess high strength, high elastic limits, excellent corrosion resistance, and thermoplastic formability compared to crystalline materials. This combination of structural and functional properties makes them potential candidates for applications where the use of conventional materials has reached a limit of effectiveness.This chapter addresses the history of bulk metallic glasses, their thermal stability, and their most attractive properties. Some examples of industrial applications are given.
7 schema:editor Ne417c49bf3dc41b18eee81a791b35126
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N7e30d96fb277491cb5fae86594201da1
11 schema:keywords applications
12 attractive properties
13 biomaterials
14 bulk metallic glass
15 candidates
16 cases
17 ceramics
18 chapter
19 combination
20 contradictory properties
21 conventional materials
22 corrosion resistance
23 crystalline materials
24 effectiveness
25 elastic limit
26 example
27 excellent corrosion resistance
28 field
29 field of biomaterials
30 field of jewelry
31 formability
32 functional properties
33 glass
34 great potential
35 high elastic limit
36 high strength
37 high yield strength
38 history
39 industrial applications
40 jewelry
41 limit
42 limits of effectiveness
43 materials
44 mechanical properties
45 metallic glasses
46 metals
47 micromechanics
48 need
49 numerous ongoing research
50 ongoing research
51 polymers
52 potential
53 potential candidate
54 properties
55 research
56 resistance
57 stability
58 strength
59 thermal stability
60 thermoplastic formability
61 use
62 yield strength
63 schema:name Metallic Glasses
64 schema:pagination 617-643
65 schema:productId Nce9b850fb4494524bd525ed7d796df19
66 Nfe03bd5b74d745229be113643f435932
67 schema:publisher N687b307680ac4d31a0214a592d1404bc
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122410886
69 https://doi.org/10.1007/978-3-319-93728-1_18
70 schema:sdDatePublished 2022-12-01T06:54
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na2636a847fb845c0960e610a9c3a63ca
73 schema:url https://doi.org/10.1007/978-3-319-93728-1_18
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N0147041e7afa47678e0d42520a544113 schema:familyName Calvez
78 schema:givenName Laurent
79 rdf:type schema:Person
80 N2767a983f30f4131a2856fcafde81b28 schema:familyName Hu
81 schema:givenName Juejun
82 rdf:type schema:Person
83 N42ff46724f054866b8a3726d2cf7f4af schema:familyName Musgraves
84 schema:givenName J. David
85 rdf:type schema:Person
86 N687b307680ac4d31a0214a592d1404bc schema:name Springer Nature
87 rdf:type schema:Organisation
88 N7b99e278d1114310b4da15df6e7f7030 rdf:first N2767a983f30f4131a2856fcafde81b28
89 rdf:rest Nfde4114b7671418cbc021a1437b3c4ce
90 N7e30d96fb277491cb5fae86594201da1 schema:isbn 978-3-319-93726-7
91 978-3-319-93728-1
92 schema:name Springer Handbook of Glass
93 rdf:type schema:Book
94 N84fc09a033a54ab98898c3298224fe6c rdf:first sg:person.0711612715.10
95 rdf:rest Na3a171416e864a46b36c603d31b6f743
96 Na2636a847fb845c0960e610a9c3a63ca schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na3a171416e864a46b36c603d31b6f743 rdf:first sg:person.0643477515.36
99 rdf:rest rdf:nil
100 Nce9b850fb4494524bd525ed7d796df19 schema:name doi
101 schema:value 10.1007/978-3-319-93728-1_18
102 rdf:type schema:PropertyValue
103 Ne417c49bf3dc41b18eee81a791b35126 rdf:first N42ff46724f054866b8a3726d2cf7f4af
104 rdf:rest N7b99e278d1114310b4da15df6e7f7030
105 Nfde4114b7671418cbc021a1437b3c4ce rdf:first N0147041e7afa47678e0d42520a544113
106 rdf:rest rdf:nil
107 Nfe03bd5b74d745229be113643f435932 schema:name dimensions_id
108 schema:value pub.1122410886
109 rdf:type schema:PropertyValue
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:person.0643477515.36 schema:affiliation grid-institutes:grid.440588.5
117 schema:familyName Qiao
118 schema:givenName Jichao
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643477515.36
120 rdf:type schema:Person
121 sg:person.0711612715.10 schema:affiliation grid-institutes:grid.15399.37
122 schema:familyName Pelletier
123 schema:givenName Jean-Marc
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711612715.10
125 rdf:type schema:Person
126 grid-institutes:grid.15399.37 schema:alternateName INSA-Lyon, MATEIS UMR 55140, University of Lyon, Villeurbanne, France
127 schema:name INSA-Lyon, MATEIS UMR 55140, University of Lyon, Villeurbanne, France
128 rdf:type schema:Organization
129 grid-institutes:grid.440588.5 schema:alternateName School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi’an, China
130 schema:name School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi’an, China
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...