Fast Retrieval of Weather Analogues in a Multi-petabytes Archive Using Wavelet-Based Fingerprints View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Baudouin Raoult , Giuseppe Di Fatta , Florian Pappenberger , Bryan Lawrence

ABSTRACT

Very large climate data repositories provide a consistent view of weather conditions over long time periods. In some applications and studies, given a current weather pattern (e.g. today’s weather), it is useful to identify similar ones (weather analogues) in the past. Looking for similar patterns in an archive using a brute force approach requires data to be retrieved from the archive and then compared to the query, using a chosen similarity measure. Such operation would be very long and costly. In this work, a wavelet-based fingerprinting scheme is proposed to index all weather patterns from the archive. The scheme allows to answer queries by computing the fingerprint of the query pattern, then comparing them to the index of all fingerprints more efficiently, in order to then retrieve only the corresponding selected data from the archive. The experimental analysis is carried out on the ECMWF’s ERA-Interim reanalyses data representing the global state of the atmosphere over several decades. Results shows that 32 bits fingerprints are sufficient to represent meteorological fields over a 1700 km \({\times }\) 1700 km region and allow the quasi instantaneous retrieval of weather analogues. More... »

PAGES

697-710

References to SciGraph publications

Book

TITLE

Computational Science – ICCS 2018

ISBN

978-3-319-93700-7
978-3-319-93701-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-93701-4_55

DOI

http://dx.doi.org/10.1007/978-3-319-93701-4_55

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104519870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raoult", 
        "givenName": "Baudouin", 
        "id": "sg:person.011104674105.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104674105.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Reading", 
          "id": "https://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "University of Reading"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Fatta", 
        "givenName": "Giuseppe", 
        "id": "sg:person.013116071033.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116071033.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-Range Weather Forecasts"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pappenberger", 
        "givenName": "Florian", 
        "id": "sg:person.013576170771.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Centre for Atmospheric Science", 
          "id": "https://www.grid.ac/institutes/grid.422191.d", 
          "name": [
            "University of Reading", 
            "National Centre for Atmospheric Science"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lawrence", 
        "givenName": "Bryan", 
        "id": "sg:person.01033355750.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355750.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006783469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-d-12-00281.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009123222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9664-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009200694", 
          "https://doi.org/10.1007/978-94-015-9664-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9664-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009200694", 
          "https://doi.org/10.1007/978-94-015-9664-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd005075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014651831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-13-0140.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016343278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.449734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028998917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/met.1597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032831557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1273340.1273347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037396534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1183614.1183622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040711414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-13-00043.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045015083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/218380.218454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046858645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160410705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160410705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050310035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2007.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2007.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcse.2011.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061398464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1989)117<2230:anlawf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15191/nwajom.2014.0218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067604895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v46i3.15481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071279710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093217305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2002.994711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094707642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itcc.2000.844212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094972285"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Very large climate data repositories provide a consistent view of weather conditions over long time periods. In some applications and studies, given a current weather pattern (e.g. today\u2019s weather), it is useful to identify similar ones (weather analogues) in the past. Looking for similar patterns in an archive using a brute force approach requires data to be retrieved from the archive and then compared to the query, using a chosen similarity measure. Such operation would be very long and costly. In this work, a wavelet-based fingerprinting scheme is proposed to index all weather patterns from the archive. The scheme allows to answer queries by computing the fingerprint of the query pattern, then comparing them to the index of all fingerprints more efficiently, in order to then retrieve only the corresponding selected data from the archive. The experimental analysis is carried out on the ECMWF\u2019s ERA-Interim reanalyses data representing the global state of the atmosphere over several decades. Results shows that 32 bits fingerprints are sufficient to represent meteorological fields over a 1700 km \\({\\times }\\) 1700 km region and allow the quasi instantaneous retrieval of weather analogues.", 
    "editor": [
      {
        "familyName": "Shi", 
        "givenName": "Yong", 
        "type": "Person"
      }, 
      {
        "familyName": "Fu", 
        "givenName": "Haohuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Tian", 
        "givenName": "Yingjie", 
        "type": "Person"
      }, 
      {
        "familyName": "Krzhizhanovskaya", 
        "givenName": "Valeria V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lees", 
        "givenName": "Michael Harold", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Sloot", 
        "givenName": "Peter M. A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-93701-4_55", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-93700-7", 
        "978-3-319-93701-4"
      ], 
      "name": "Computational Science \u2013 ICCS 2018", 
      "type": "Book"
    }, 
    "name": "Fast Retrieval of Weather Analogues in a Multi-petabytes Archive Using Wavelet-Based Fingerprints", 
    "pagination": "697-710", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-93701-4_55"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "74968e30a026c3f2c7b7b24c5a96f0931e6eb6b165658731a26e90c5d2758838"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104519870"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-93701-4_55", 
      "https://app.dimensions.ai/details/publication/pub.1104519870"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-93701-4_55"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93701-4_55'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93701-4_55'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93701-4_55'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93701-4_55'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-93701-4_55 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nebef4c6ab6cd412d9e78bd3db7fed46d
4 schema:citation sg:pub.10.1007/978-94-015-9664-0
5 https://doi.org/10.1002/cpa.3160410705
6 https://doi.org/10.1002/met.1597
7 https://doi.org/10.1002/qj.828
8 https://doi.org/10.1016/j.patcog.2008.05.006
9 https://doi.org/10.1029/2004jd005075
10 https://doi.org/10.1109/78.258085
11 https://doi.org/10.1109/cvpr.2009.5206528
12 https://doi.org/10.1109/icde.2002.994711
13 https://doi.org/10.1109/itcc.2000.844212
14 https://doi.org/10.1109/mcse.2007.53
15 https://doi.org/10.1109/mcse.2007.55
16 https://doi.org/10.1109/mcse.2011.37
17 https://doi.org/10.1117/12.449734
18 https://doi.org/10.1145/1183614.1183622
19 https://doi.org/10.1145/1273340.1273347
20 https://doi.org/10.1145/218380.218454
21 https://doi.org/10.1175/1520-0493(1989)117<2230:anlawf>2.0.co;2
22 https://doi.org/10.1175/bams-d-13-00043.1
23 https://doi.org/10.1175/jhm-d-13-0140.1
24 https://doi.org/10.1175/mwr-d-12-00281.1
25 https://doi.org/10.15191/nwajom.2014.0218
26 https://doi.org/10.3402/tellusa.v46i3.15481
27 schema:datePublished 2018
28 schema:datePublishedReg 2018-01-01
29 schema:description Very large climate data repositories provide a consistent view of weather conditions over long time periods. In some applications and studies, given a current weather pattern (e.g. today’s weather), it is useful to identify similar ones (weather analogues) in the past. Looking for similar patterns in an archive using a brute force approach requires data to be retrieved from the archive and then compared to the query, using a chosen similarity measure. Such operation would be very long and costly. In this work, a wavelet-based fingerprinting scheme is proposed to index all weather patterns from the archive. The scheme allows to answer queries by computing the fingerprint of the query pattern, then comparing them to the index of all fingerprints more efficiently, in order to then retrieve only the corresponding selected data from the archive. The experimental analysis is carried out on the ECMWF’s ERA-Interim reanalyses data representing the global state of the atmosphere over several decades. Results shows that 32 bits fingerprints are sufficient to represent meteorological fields over a 1700 km \({\times }\) 1700 km region and allow the quasi instantaneous retrieval of weather analogues.
30 schema:editor N17a6a6ffd73f4eb7b98f49d1c8f35d7b
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N95ada7a919814eb28192dd5fbc7d9464
35 schema:name Fast Retrieval of Weather Analogues in a Multi-petabytes Archive Using Wavelet-Based Fingerprints
36 schema:pagination 697-710
37 schema:productId N0ef40db0a6984c2cbc64ce6d604d4278
38 Nec7ce85d2efd43578ec3212f3d1f25ec
39 Nf4a8140aa1a54eaa911a5281a9a52026
40 schema:publisher N7b310667cc824b079f5196d8bb888c44
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104519870
42 https://doi.org/10.1007/978-3-319-93701-4_55
43 schema:sdDatePublished 2019-04-15T15:04
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N7229938cd3ee4be2a9add517025b7fca
46 schema:url http://link.springer.com/10.1007/978-3-319-93701-4_55
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N0ef40db0a6984c2cbc64ce6d604d4278 schema:name doi
51 schema:value 10.1007/978-3-319-93701-4_55
52 rdf:type schema:PropertyValue
53 N148f1880ec7049c38880d38c39f88b14 schema:familyName Sloot
54 schema:givenName Peter M. A.
55 rdf:type schema:Person
56 N17a6a6ffd73f4eb7b98f49d1c8f35d7b rdf:first Nadf2301766db4712be0107a730cc5e3f
57 rdf:rest Nfea9bdfee7c540e891ff8975149610c0
58 N17d6affab66b4d33bbfae3581d16d1d4 schema:familyName Krzhizhanovskaya
59 schema:givenName Valeria V.
60 rdf:type schema:Person
61 N232b81826b504580a1b6bafb8b98924c rdf:first Nb2fd06c8cdc44857b5e386df989d1af1
62 rdf:rest Nba76fe46619045f1a8de608df3693cbe
63 N387bd3f159e84db2b07992df3b669785 rdf:first sg:person.013116071033.97
64 rdf:rest N98920074418e46a294aea90652fc1907
65 N4fb84b507e7a4760a40b47116135ff63 rdf:first N5325cbef04aa4ae6bccfeea8b3790500
66 rdf:rest N232b81826b504580a1b6bafb8b98924c
67 N5325cbef04aa4ae6bccfeea8b3790500 schema:familyName Lees
68 schema:givenName Michael Harold
69 rdf:type schema:Person
70 N6212ec08963843d3818a221539f5de2d rdf:first N17d6affab66b4d33bbfae3581d16d1d4
71 rdf:rest N4fb84b507e7a4760a40b47116135ff63
72 N7229938cd3ee4be2a9add517025b7fca schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N72b516cb038f41ac8dc5c6faf4190f0e rdf:first sg:person.01033355750.08
75 rdf:rest rdf:nil
76 N7b310667cc824b079f5196d8bb888c44 schema:location Cham
77 schema:name Springer International Publishing
78 rdf:type schema:Organisation
79 N7d81aad9ad634694a5b9da3e2d8db74c schema:familyName Fu
80 schema:givenName Haohuan
81 rdf:type schema:Person
82 N7e65bf750a624090ab2afe403262a9e4 rdf:first Na5958975116c4c19ab44f746b1730822
83 rdf:rest N6212ec08963843d3818a221539f5de2d
84 N95ada7a919814eb28192dd5fbc7d9464 schema:isbn 978-3-319-93700-7
85 978-3-319-93701-4
86 schema:name Computational Science – ICCS 2018
87 rdf:type schema:Book
88 N98920074418e46a294aea90652fc1907 rdf:first sg:person.013576170771.53
89 rdf:rest N72b516cb038f41ac8dc5c6faf4190f0e
90 Na5958975116c4c19ab44f746b1730822 schema:familyName Tian
91 schema:givenName Yingjie
92 rdf:type schema:Person
93 Nadf2301766db4712be0107a730cc5e3f schema:familyName Shi
94 schema:givenName Yong
95 rdf:type schema:Person
96 Nb2fd06c8cdc44857b5e386df989d1af1 schema:familyName Dongarra
97 schema:givenName Jack
98 rdf:type schema:Person
99 Nba76fe46619045f1a8de608df3693cbe rdf:first N148f1880ec7049c38880d38c39f88b14
100 rdf:rest rdf:nil
101 Nebef4c6ab6cd412d9e78bd3db7fed46d rdf:first sg:person.011104674105.72
102 rdf:rest N387bd3f159e84db2b07992df3b669785
103 Nec7ce85d2efd43578ec3212f3d1f25ec schema:name readcube_id
104 schema:value 74968e30a026c3f2c7b7b24c5a96f0931e6eb6b165658731a26e90c5d2758838
105 rdf:type schema:PropertyValue
106 Nf4a8140aa1a54eaa911a5281a9a52026 schema:name dimensions_id
107 schema:value pub.1104519870
108 rdf:type schema:PropertyValue
109 Nfea9bdfee7c540e891ff8975149610c0 rdf:first N7d81aad9ad634694a5b9da3e2d8db74c
110 rdf:rest N7e65bf750a624090ab2afe403262a9e4
111 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
112 schema:name Information and Computing Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information Systems
116 rdf:type schema:DefinedTerm
117 sg:person.01033355750.08 schema:affiliation https://www.grid.ac/institutes/grid.422191.d
118 schema:familyName Lawrence
119 schema:givenName Bryan
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355750.08
121 rdf:type schema:Person
122 sg:person.011104674105.72 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
123 schema:familyName Raoult
124 schema:givenName Baudouin
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011104674105.72
126 rdf:type schema:Person
127 sg:person.013116071033.97 schema:affiliation https://www.grid.ac/institutes/grid.9435.b
128 schema:familyName Di Fatta
129 schema:givenName Giuseppe
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013116071033.97
131 rdf:type schema:Person
132 sg:person.013576170771.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
133 schema:familyName Pappenberger
134 schema:givenName Florian
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013576170771.53
136 rdf:type schema:Person
137 sg:pub.10.1007/978-94-015-9664-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009200694
138 https://doi.org/10.1007/978-94-015-9664-0
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/cpa.3160410705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310035
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/met.1597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032831557
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.patcog.2008.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006783469
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/2004jd005075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014651831
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/78.258085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228473
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/cvpr.2009.5206528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093217305
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/icde.2002.994711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094707642
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/itcc.2000.844212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094972285
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/mcse.2007.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398157
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/mcse.2007.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398159
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/mcse.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061398464
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1117/12.449734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028998917
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/1183614.1183622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040711414
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1145/1273340.1273347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037396534
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1145/218380.218454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046858645
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1175/1520-0493(1989)117<2230:anlawf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452815
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/bams-d-13-00043.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045015083
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/jhm-d-13-0140.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016343278
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/mwr-d-12-00281.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009123222
179 rdf:type schema:CreativeWork
180 https://doi.org/10.15191/nwajom.2014.0218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067604895
181 rdf:type schema:CreativeWork
182 https://doi.org/10.3402/tellusa.v46i3.15481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071279710
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.422191.d schema:alternateName National Centre for Atmospheric Science
185 schema:name National Centre for Atmospheric Science
186 University of Reading
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
189 schema:name European Centre for Medium-Range Weather Forecasts
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.9435.b schema:alternateName University of Reading
192 schema:name University of Reading
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...