Energy-Efficient Process Replication by Forcing Meaningless Replicas to Terminate in Virtual Machine Environment View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Tomoya Enokido , Dilawaer Duolikun , Makoto Takizawa

ABSTRACT

Server cluster systems equipped with virtual machines are widely used to provide various types of reliable application services. Especially, multiple replicas of each application process can be redundantly performed on multiple virtual machines to realize reliable application services. On the other hand, a large amount of electric energy is consumed in a server cluster since multiple replicas of each application process are performed on multiple virtual machines. In this paper, the improved redundant energy consumption laxity based (IRECLB) algorithm is newly proposed to reduce the total electric energy consumption of a server cluster for redundantly performing each application process by forcing meaningless replicas to terminate. We evaluate the IRECLB algorithm in terms of the total electric energy consumption of a server cluster and the average response time of each process compared with the redundant energy consumption laxity based (RECLB) algorithm previously proposed. More... »

PAGES

149-160

References to SciGraph publications

  • 2017. An Energy-Efficient Process Replication Algorithm in Virtual Machine Environments in ADVANCES ON BROAD-BAND WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS
  • Book

    TITLE

    Complex, Intelligent, and Software Intensive Systems

    ISBN

    978-3-319-93658-1
    978-3-319-93659-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93659-8_13

    DOI

    http://dx.doi.org/10.1007/978-3-319-93659-8_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104892966


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rissho University", 
              "id": "https://www.grid.ac/institutes/grid.442924.d", 
              "name": [
                "Rissho University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Enokido", 
            "givenName": "Tomoya", 
            "id": "sg:person.011323525173.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323525173.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hosei University", 
              "id": "https://www.grid.ac/institutes/grid.257114.4", 
              "name": [
                "Hosei University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Duolikun", 
            "givenName": "Dilawaer", 
            "id": "sg:person.015403137025.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403137025.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hosei University", 
              "id": "https://www.grid.ac/institutes/grid.257114.4", 
              "name": [
                "Hosei University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takizawa", 
            "givenName": "Makoto", 
            "id": "sg:person.010241424037.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010241424037.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/357172.357176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001982359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-49106-6_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020553329", 
              "https://doi.org/10.1007/978-3-319-49106-6_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsyst.2010.2047296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061338840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2010.2060453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061624601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2012.2206357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061625701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2011.2173203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2014.2303315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cisis.2015.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094447487"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019", 
        "datePublishedReg": "2019-01-01", 
        "description": "Server cluster systems equipped with virtual machines are widely used to provide various types of reliable application services. Especially, multiple replicas of each application process can be redundantly performed on multiple virtual machines to realize reliable application services. On the other hand, a large amount of electric energy is consumed in a server cluster since multiple replicas of each application process are performed on multiple virtual machines. In this paper, the improved redundant energy consumption laxity based (IRECLB) algorithm is newly proposed to reduce the total electric energy consumption of a server cluster for redundantly performing each application process by forcing meaningless replicas to terminate. We evaluate the IRECLB algorithm in terms of the total electric energy consumption of a server cluster and the average response time of each process compared with the redundant energy consumption laxity based (RECLB) algorithm previously proposed.", 
        "editor": [
          {
            "familyName": "Barolli", 
            "givenName": "Leonard", 
            "type": "Person"
          }, 
          {
            "familyName": "Javaid", 
            "givenName": "Nadeem", 
            "type": "Person"
          }, 
          {
            "familyName": "Ikeda", 
            "givenName": "Makoto", 
            "type": "Person"
          }, 
          {
            "familyName": "Takizawa", 
            "givenName": "Makoto", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93659-8_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-93658-1", 
            "978-3-319-93659-8"
          ], 
          "name": "Complex, Intelligent, and Software Intensive Systems", 
          "type": "Book"
        }, 
        "name": "Energy-Efficient Process Replication by Forcing Meaningless Replicas to Terminate in Virtual Machine Environment", 
        "pagination": "149-160", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93659-8_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2e64afc7b220cd48354d47cf39752fd1cfc8f454bc0418d5061ad8059c29d7c9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104892966"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93659-8_13", 
          "https://app.dimensions.ai/details/publication/pub.1104892966"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000427.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-93659-8_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93659-8_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93659-8_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93659-8_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93659-8_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93659-8_13 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Ncef6fd2690954c00a8a24425eaa288be
    4 schema:citation sg:pub.10.1007/978-3-319-49106-6_10
    5 https://doi.org/10.1109/cisis.2015.18
    6 https://doi.org/10.1109/jsyst.2010.2047296
    7 https://doi.org/10.1109/tie.2010.2060453
    8 https://doi.org/10.1109/tie.2012.2206357
    9 https://doi.org/10.1109/tii.2011.2173203
    10 https://doi.org/10.1109/tii.2014.2303315
    11 https://doi.org/10.1145/357172.357176
    12 schema:datePublished 2019
    13 schema:datePublishedReg 2019-01-01
    14 schema:description Server cluster systems equipped with virtual machines are widely used to provide various types of reliable application services. Especially, multiple replicas of each application process can be redundantly performed on multiple virtual machines to realize reliable application services. On the other hand, a large amount of electric energy is consumed in a server cluster since multiple replicas of each application process are performed on multiple virtual machines. In this paper, the improved redundant energy consumption laxity based (IRECLB) algorithm is newly proposed to reduce the total electric energy consumption of a server cluster for redundantly performing each application process by forcing meaningless replicas to terminate. We evaluate the IRECLB algorithm in terms of the total electric energy consumption of a server cluster and the average response time of each process compared with the redundant energy consumption laxity based (RECLB) algorithm previously proposed.
    15 schema:editor N23fcb5e42ae748389363de41bf9c3b7c
    16 schema:genre chapter
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N8ca5991bd5a24c4f903fd52325ab56e0
    20 schema:name Energy-Efficient Process Replication by Forcing Meaningless Replicas to Terminate in Virtual Machine Environment
    21 schema:pagination 149-160
    22 schema:productId N255b0aaf73cd48bd8142777a5986a9af
    23 N935afbae9fac4feb84fc66af2daec5d6
    24 N972b578c39624358b1b6eaf33fea02c7
    25 schema:publisher N45debfec698c480782b0b91d445e158e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104892966
    27 https://doi.org/10.1007/978-3-319-93659-8_13
    28 schema:sdDatePublished 2019-04-15T14:43
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N61268692cc9d4c48ba73787b98eddb86
    31 schema:url http://link.springer.com/10.1007/978-3-319-93659-8_13
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset chapters
    34 rdf:type schema:Chapter
    35 N0365ace4687e40d4a4db3bb1cf850590 rdf:first sg:person.010241424037.00
    36 rdf:rest rdf:nil
    37 N23fcb5e42ae748389363de41bf9c3b7c rdf:first N2be69edd2be64ace925e47471f864d54
    38 rdf:rest N5b5a7aad36ea4bd892de2ccd4b4a35ad
    39 N255b0aaf73cd48bd8142777a5986a9af schema:name doi
    40 schema:value 10.1007/978-3-319-93659-8_13
    41 rdf:type schema:PropertyValue
    42 N2be69edd2be64ace925e47471f864d54 schema:familyName Barolli
    43 schema:givenName Leonard
    44 rdf:type schema:Person
    45 N45debfec698c480782b0b91d445e158e schema:location Cham
    46 schema:name Springer International Publishing
    47 rdf:type schema:Organisation
    48 N53adb5660bf144cc8be07ce1783e7900 rdf:first N80ac6eab621c4fc5a700f237c92c9073
    49 rdf:rest Nd790dd0a7ed94e5093ce17758b82cb81
    50 N53b9b2f8cc194cbcb5aeeb5c2936d5a5 schema:familyName Javaid
    51 schema:givenName Nadeem
    52 rdf:type schema:Person
    53 N5b5a7aad36ea4bd892de2ccd4b4a35ad rdf:first N53b9b2f8cc194cbcb5aeeb5c2936d5a5
    54 rdf:rest N53adb5660bf144cc8be07ce1783e7900
    55 N61268692cc9d4c48ba73787b98eddb86 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N80ac6eab621c4fc5a700f237c92c9073 schema:familyName Ikeda
    58 schema:givenName Makoto
    59 rdf:type schema:Person
    60 N8ca5991bd5a24c4f903fd52325ab56e0 schema:isbn 978-3-319-93658-1
    61 978-3-319-93659-8
    62 schema:name Complex, Intelligent, and Software Intensive Systems
    63 rdf:type schema:Book
    64 N8cdcda51b0e0452b8d7ea1c6c95c2042 schema:familyName Takizawa
    65 schema:givenName Makoto
    66 rdf:type schema:Person
    67 N935afbae9fac4feb84fc66af2daec5d6 schema:name readcube_id
    68 schema:value 2e64afc7b220cd48354d47cf39752fd1cfc8f454bc0418d5061ad8059c29d7c9
    69 rdf:type schema:PropertyValue
    70 N972b578c39624358b1b6eaf33fea02c7 schema:name dimensions_id
    71 schema:value pub.1104892966
    72 rdf:type schema:PropertyValue
    73 Nafbc64dc0856464d940f65bf8519a19d rdf:first sg:person.015403137025.41
    74 rdf:rest N0365ace4687e40d4a4db3bb1cf850590
    75 Ncef6fd2690954c00a8a24425eaa288be rdf:first sg:person.011323525173.27
    76 rdf:rest Nafbc64dc0856464d940f65bf8519a19d
    77 Nd790dd0a7ed94e5093ce17758b82cb81 rdf:first N8cdcda51b0e0452b8d7ea1c6c95c2042
    78 rdf:rest rdf:nil
    79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Information and Computing Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Artificial Intelligence and Image Processing
    84 rdf:type schema:DefinedTerm
    85 sg:person.010241424037.00 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
    86 schema:familyName Takizawa
    87 schema:givenName Makoto
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010241424037.00
    89 rdf:type schema:Person
    90 sg:person.011323525173.27 schema:affiliation https://www.grid.ac/institutes/grid.442924.d
    91 schema:familyName Enokido
    92 schema:givenName Tomoya
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323525173.27
    94 rdf:type schema:Person
    95 sg:person.015403137025.41 schema:affiliation https://www.grid.ac/institutes/grid.257114.4
    96 schema:familyName Duolikun
    97 schema:givenName Dilawaer
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403137025.41
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-319-49106-6_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020553329
    101 https://doi.org/10.1007/978-3-319-49106-6_10
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/cisis.2015.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094447487
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/jsyst.2010.2047296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338840
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/tie.2010.2060453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061624601
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1109/tie.2012.2206357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625701
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1109/tii.2011.2173203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632013
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1109/tii.2014.2303315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632445
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1145/357172.357176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001982359
    116 rdf:type schema:CreativeWork
    117 https://www.grid.ac/institutes/grid.257114.4 schema:alternateName Hosei University
    118 schema:name Hosei University
    119 rdf:type schema:Organization
    120 https://www.grid.ac/institutes/grid.442924.d schema:alternateName Rissho University
    121 schema:name Rissho University
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...