A Pilot Study: Introduction of Time-Domain Segment to Intensity-Based Perception Model of High-Frequency Vibration View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Nan Cao , Hikaru Nagano , Masashi Konyo , Shogo Okamoto , Satoshi Tadokoro

ABSTRACT

The intensity of a high-frequency vibration is the primary cue to convey vibrotactile information perceived by the Pacinian system. However, the conventional intensity-based spectral power model is not sufficient to interpret a relatively slow time-variant pattern of vibration such as amplitude-modulated (AM) vibrations. This paper introduced a time-domain segment to the intensity-based model such that a long-term vibration pattern is divided into multiple short-term sinusoidal vibrations that maintain the same energy. We expected that such short-term segmentation could deliver the similar perception if the energy of each segment of the reproduced vibration is the same as the original waveform even though the time-segmented reproduced waveform has a step-wise envelope shape. We conducted a pilot psychophysical experiment in which the participants discriminated between the original AM vibrations and the time-segmented vibrations by changing the segment size from 1/6 to 1/2 of the AM period. The experiment is conducted under different combinations of the carrier frequencies (300 Hz and 600 Hz) and envelope frequencies (15 Hz, 30 Hz, and 45 Hz) frequencies. The results showed that the participants had low discrimination ratios (the mean values are less than 0.6) at the segment size from 1/6 to 1/3 of the AM period and the participants could discriminate easily between the flat sinusoidal vibration and the original AM vibration (the mean discrimination ratios are larger than 0.90) even if the energies of the two vibrations were maintained. The results suggest that the time-segmented intensity-based model could reproduce perceptually-similar vibrations for AM vibrations at the segment size from 1/6 to 1/3 of the AM period. More... »

PAGES

321-332

References to SciGraph publications

  • 2005-07. Pacinian representations of fine surface texture in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • 2005-07. Vibrotactile intensity and frequency information in the Pacinian system: A psychophysical model in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • 2016. What is the Hardness Perceived by Tapping? in HAPTICS: PERCEPTION, DEVICES, CONTROL, AND APPLICATIONS
  • 1996. Vebrotactile adaptation of a RA system: A psychophysical analysis in SOMESTHESIS AND THE NEUROBIOLOGY OF THE SOMATOSENSORY CORTEX
  • Book

    TITLE

    Haptics: Science, Technology, and Applications

    ISBN

    978-3-319-93444-0
    978-3-319-93445-7

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93445-7_28

    DOI

    http://dx.doi.org/10.1007/978-3-319-93445-7_28

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104378499


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Tohoku University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Nan", 
            "id": "sg:person.010662527722.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662527722.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Tohoku University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagano", 
            "givenName": "Hikaru", 
            "id": "sg:person.010145067313.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Tohoku University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konyo", 
            "givenName": "Masashi", 
            "id": "sg:person.01101070023.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nagoya University", 
              "id": "https://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Nagoya University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okamoto", 
            "givenName": "Shogo", 
            "id": "sg:person.0740553076.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740553076.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tohoku University", 
              "id": "https://www.grid.ac/institutes/grid.69566.3a", 
              "name": [
                "Tohoku University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tadokoro", 
            "givenName": "Satoshi", 
            "id": "sg:person.013454033251.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-42321-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031035717", 
              "https://doi.org/10.1007/978-3-319-42321-0_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03193537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031490866", 
              "https://doi.org/10.3758/bf03193537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9016-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032416551", 
              "https://doi.org/10.1007/978-3-0348-9016-8_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9016-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032416551", 
              "https://doi.org/10.1007/978-3-0348-9016-8_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0899022031000083825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044944423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03193536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046075438", 
              "https://doi.org/10.3758/bf03193536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3516.951362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061160562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/toh.2011.31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061741330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/toh.2011.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061741337"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2006.32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061812676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.1288937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062265679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.393380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062344672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.15-04-02808.1995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082479730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/whc.2011.5945462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093446554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/whc.2011.5945526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094048915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/haptic.2010.5444665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094145378"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018", 
        "datePublishedReg": "2018-01-01", 
        "description": "The intensity of a high-frequency vibration is the primary cue to convey vibrotactile information perceived by the Pacinian system. However, the conventional intensity-based spectral power model is not sufficient to interpret a relatively slow time-variant pattern of vibration such as amplitude-modulated (AM) vibrations. This paper introduced a time-domain segment to the intensity-based model such that a long-term vibration pattern is divided into multiple short-term sinusoidal vibrations that maintain the same energy. We expected that such short-term segmentation could deliver the similar perception if the energy of each segment of the reproduced vibration is the same as the original waveform even though the time-segmented reproduced waveform has a step-wise envelope shape. We conducted a pilot psychophysical experiment in which the participants discriminated between the original AM vibrations and the time-segmented vibrations by changing the segment size from 1/6 to 1/2 of the AM period. The experiment is conducted under different combinations of the carrier frequencies (300 Hz and 600 Hz) and envelope frequencies (15 Hz, 30 Hz, and 45 Hz) frequencies. The results showed that the participants had low discrimination ratios (the mean values are less than 0.6) at the segment size from 1/6 to 1/3 of the AM period and the participants could discriminate easily between the flat sinusoidal vibration and the original AM vibration (the mean discrimination ratios are larger than 0.90) even if the energies of the two vibrations were maintained. The results suggest that the time-segmented intensity-based model could reproduce perceptually-similar vibrations for AM vibrations at the segment size from 1/6 to 1/3 of the AM period.", 
        "editor": [
          {
            "familyName": "Prattichizzo", 
            "givenName": "Domenico", 
            "type": "Person"
          }, 
          {
            "familyName": "Shinoda", 
            "givenName": "Hiroyuki", 
            "type": "Person"
          }, 
          {
            "familyName": "Tan", 
            "givenName": "Hong Z.", 
            "type": "Person"
          }, 
          {
            "familyName": "Ruffaldi", 
            "givenName": "Emanuele", 
            "type": "Person"
          }, 
          {
            "familyName": "Frisoli", 
            "givenName": "Antonio", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93445-7_28", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-93444-0", 
            "978-3-319-93445-7"
          ], 
          "name": "Haptics: Science, Technology, and Applications", 
          "type": "Book"
        }, 
        "name": "A Pilot Study: Introduction of\u00a0Time-Domain Segment to\u00a0Intensity-Based Perception Model of\u00a0High-Frequency Vibration", 
        "pagination": "321-332", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93445-7_28"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a2b1cfd7f5019c2dc8796c283a30db47db1f36571915a0be0b6706ce3ffd2130"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104378499"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93445-7_28", 
          "https://app.dimensions.ai/details/publication/pub.1104378499"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000604.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-93445-7_28"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93445-7_28'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93445-7_28'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93445-7_28'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93445-7_28'


     

    This table displays all metadata directly associated to this object as RDF triples.

    165 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93445-7_28 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N5af1b312edd643fc805cf07f8de4f55f
    4 schema:citation sg:pub.10.1007/978-3-0348-9016-8_9
    5 sg:pub.10.1007/978-3-319-42321-0_1
    6 sg:pub.10.3758/bf03193536
    7 sg:pub.10.3758/bf03193537
    8 https://doi.org/10.1080/0899022031000083825
    9 https://doi.org/10.1109/3516.951362
    10 https://doi.org/10.1109/haptic.2010.5444665
    11 https://doi.org/10.1109/toh.2011.31
    12 https://doi.org/10.1109/toh.2011.38
    13 https://doi.org/10.1109/tvcg.2006.32
    14 https://doi.org/10.1109/whc.2011.5945462
    15 https://doi.org/10.1109/whc.2011.5945526
    16 https://doi.org/10.1121/1.1288937
    17 https://doi.org/10.1121/1.393380
    18 https://doi.org/10.1523/jneurosci.15-04-02808.1995
    19 schema:datePublished 2018
    20 schema:datePublishedReg 2018-01-01
    21 schema:description The intensity of a high-frequency vibration is the primary cue to convey vibrotactile information perceived by the Pacinian system. However, the conventional intensity-based spectral power model is not sufficient to interpret a relatively slow time-variant pattern of vibration such as amplitude-modulated (AM) vibrations. This paper introduced a time-domain segment to the intensity-based model such that a long-term vibration pattern is divided into multiple short-term sinusoidal vibrations that maintain the same energy. We expected that such short-term segmentation could deliver the similar perception if the energy of each segment of the reproduced vibration is the same as the original waveform even though the time-segmented reproduced waveform has a step-wise envelope shape. We conducted a pilot psychophysical experiment in which the participants discriminated between the original AM vibrations and the time-segmented vibrations by changing the segment size from 1/6 to 1/2 of the AM period. The experiment is conducted under different combinations of the carrier frequencies (300 Hz and 600 Hz) and envelope frequencies (15 Hz, 30 Hz, and 45 Hz) frequencies. The results showed that the participants had low discrimination ratios (the mean values are less than 0.6) at the segment size from 1/6 to 1/3 of the AM period and the participants could discriminate easily between the flat sinusoidal vibration and the original AM vibration (the mean discrimination ratios are larger than 0.90) even if the energies of the two vibrations were maintained. The results suggest that the time-segmented intensity-based model could reproduce perceptually-similar vibrations for AM vibrations at the segment size from 1/6 to 1/3 of the AM period.
    22 schema:editor Nde7d7c583ec94669a7aee388cc521d27
    23 schema:genre chapter
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf Nbb41d3a664ca44acb92792a5ec1a43b1
    27 schema:name A Pilot Study: Introduction of Time-Domain Segment to Intensity-Based Perception Model of High-Frequency Vibration
    28 schema:pagination 321-332
    29 schema:productId N346e4a2218064a9682942b91901b3a6c
    30 N3f67b1cf14924dfa959279ce27153adf
    31 Na37c3c36656a4a5fa9be45df3b90b1b1
    32 schema:publisher N02527747d54c42cba224d6e759cda178
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104378499
    34 https://doi.org/10.1007/978-3-319-93445-7_28
    35 schema:sdDatePublished 2019-04-15T23:35
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N56a626fa3b684f60acc389b0507c0c0b
    38 schema:url http://link.springer.com/10.1007/978-3-319-93445-7_28
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset chapters
    41 rdf:type schema:Chapter
    42 N0078c008f7dc44d98bd8e49aec571662 schema:familyName Prattichizzo
    43 schema:givenName Domenico
    44 rdf:type schema:Person
    45 N02527747d54c42cba224d6e759cda178 schema:location Cham
    46 schema:name Springer International Publishing
    47 rdf:type schema:Organisation
    48 N17ee545b03724c10975fc3fca4732f54 rdf:first sg:person.0740553076.39
    49 rdf:rest N541e305e67bf46598fd8d7caeaa341c9
    50 N346e4a2218064a9682942b91901b3a6c schema:name readcube_id
    51 schema:value a2b1cfd7f5019c2dc8796c283a30db47db1f36571915a0be0b6706ce3ffd2130
    52 rdf:type schema:PropertyValue
    53 N3a15939d5faf49fba72f9999acdb4fc5 rdf:first N6c1a4e34e56d4419bf2c8de1e40fb494
    54 rdf:rest N5379f95ea97a4347a8dc700936dd32e1
    55 N3f67b1cf14924dfa959279ce27153adf schema:name doi
    56 schema:value 10.1007/978-3-319-93445-7_28
    57 rdf:type schema:PropertyValue
    58 N5379f95ea97a4347a8dc700936dd32e1 rdf:first N826be44d222d4747abe65d920478a261
    59 rdf:rest rdf:nil
    60 N541e305e67bf46598fd8d7caeaa341c9 rdf:first sg:person.013454033251.77
    61 rdf:rest rdf:nil
    62 N56a626fa3b684f60acc389b0507c0c0b schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N5af1b312edd643fc805cf07f8de4f55f rdf:first sg:person.010662527722.77
    65 rdf:rest N8c8844df2f77446b95d70ecda03d03e5
    66 N6c1a4e34e56d4419bf2c8de1e40fb494 schema:familyName Ruffaldi
    67 schema:givenName Emanuele
    68 rdf:type schema:Person
    69 N826be44d222d4747abe65d920478a261 schema:familyName Frisoli
    70 schema:givenName Antonio
    71 rdf:type schema:Person
    72 N8c8844df2f77446b95d70ecda03d03e5 rdf:first sg:person.010145067313.58
    73 rdf:rest Nd75b4afd484f47b392df63dc21479b42
    74 Na37c3c36656a4a5fa9be45df3b90b1b1 schema:name dimensions_id
    75 schema:value pub.1104378499
    76 rdf:type schema:PropertyValue
    77 Naa025ade697c4b98be3ad52d56fc81c3 rdf:first Nf2e28416f5d443aba28e7b2902f88d11
    78 rdf:rest Nb60e1eb0ab634009be7bfb2e7ac0dc30
    79 Nb60e1eb0ab634009be7bfb2e7ac0dc30 rdf:first Nd0b2df9e9b6d4e4db9e84a9dd6d9792e
    80 rdf:rest N3a15939d5faf49fba72f9999acdb4fc5
    81 Nbb41d3a664ca44acb92792a5ec1a43b1 schema:isbn 978-3-319-93444-0
    82 978-3-319-93445-7
    83 schema:name Haptics: Science, Technology, and Applications
    84 rdf:type schema:Book
    85 Nd0b2df9e9b6d4e4db9e84a9dd6d9792e schema:familyName Tan
    86 schema:givenName Hong Z.
    87 rdf:type schema:Person
    88 Nd75b4afd484f47b392df63dc21479b42 rdf:first sg:person.01101070023.41
    89 rdf:rest N17ee545b03724c10975fc3fca4732f54
    90 Nde7d7c583ec94669a7aee388cc521d27 rdf:first N0078c008f7dc44d98bd8e49aec571662
    91 rdf:rest Naa025ade697c4b98be3ad52d56fc81c3
    92 Nf2e28416f5d443aba28e7b2902f88d11 schema:familyName Shinoda
    93 schema:givenName Hiroyuki
    94 rdf:type schema:Person
    95 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Medical and Health Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Clinical Sciences
    100 rdf:type schema:DefinedTerm
    101 sg:person.010145067313.58 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    102 schema:familyName Nagano
    103 schema:givenName Hikaru
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58
    105 rdf:type schema:Person
    106 sg:person.010662527722.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    107 schema:familyName Cao
    108 schema:givenName Nan
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010662527722.77
    110 rdf:type schema:Person
    111 sg:person.01101070023.41 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    112 schema:familyName Konyo
    113 schema:givenName Masashi
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41
    115 rdf:type schema:Person
    116 sg:person.013454033251.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
    117 schema:familyName Tadokoro
    118 schema:givenName Satoshi
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77
    120 rdf:type schema:Person
    121 sg:person.0740553076.39 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
    122 schema:familyName Okamoto
    123 schema:givenName Shogo
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740553076.39
    125 rdf:type schema:Person
    126 sg:pub.10.1007/978-3-0348-9016-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032416551
    127 https://doi.org/10.1007/978-3-0348-9016-8_9
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-319-42321-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035717
    130 https://doi.org/10.1007/978-3-319-42321-0_1
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.3758/bf03193536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046075438
    133 https://doi.org/10.3758/bf03193536
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.3758/bf03193537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031490866
    136 https://doi.org/10.3758/bf03193537
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/0899022031000083825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044944423
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/3516.951362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061160562
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/haptic.2010.5444665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094145378
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/toh.2011.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741330
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/toh.2011.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741337
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/tvcg.2006.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812676
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/whc.2011.5945462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093446554
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/whc.2011.5945526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094048915
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1121/1.1288937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062265679
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1121/1.393380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062344672
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1523/jneurosci.15-04-02808.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082479730
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
    161 schema:name Nagoya University
    162 rdf:type schema:Organization
    163 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
    164 schema:name Tohoku University
    165 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...