Vibrotactile Feedback Improves Collision Detection in Fast Playback of First-Person View Videos View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Daniel Gongora , Hikaru Nagano , Masashi Konyo , Satoshi Tadokoro

ABSTRACT

Fast playback of First-Person View (FPV) videos reduces watching time but it also increases the perceived intensity of camera trembling and makes transient events, such as collisions, less evident. Here we propose using camera vibrations as vibrotactile feedback to support collision detection in fast video playback. To preserve camera vibrations pitch during fast playback, we use Time-Scale Modification (TSM) methods developed for audio. We show that camera vibrations delivered to the palm of the dominant hand improved collision detection performance in a pilot study. We found that reducing the levels of terrain vibrations is beneficial for collision detection. Furthermore, we found that without vibrotactile feedback participants are likely to underestimate the number of collisions in a video. Our results suggest that vibrotactile feedback has potential to support the detection of transient events during fast playback of FPV videos. More... »

PAGES

636-647

Book

TITLE

Haptics: Science, Technology, and Applications

ISBN

978-3-319-93398-6
978-3-319-93399-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-93399-3_54

DOI

http://dx.doi.org/10.1007/978-3-319-93399-3_54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104403755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gongora", 
        "givenName": "Daniel", 
        "id": "sg:person.016114526753.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114526753.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagano", 
        "givenName": "Hikaru", 
        "id": "sg:person.010145067313.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konyo", 
        "givenName": "Masashi", 
        "id": "sg:person.01101070023.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Tohoku University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tadokoro", 
        "givenName": "Satoshi", 
        "id": "sg:person.013454033251.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1121241.1121285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005422797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2008.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019756696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30301-5_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021497337", 
          "https://doi.org/10.1007/978-3-540-30301-5_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/502348.502387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027885620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhcs.2015.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030092519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhcs.2015.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030092519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-1523.34.5.1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032396178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/app6020057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039970210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2601097.2601195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040247660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1978942.1978963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051861663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060721801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2013.2294023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcc.2010.2103057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154193120404800389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064048357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/154193120404800389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064048357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.2000.926728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093766244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7299109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094392539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2001.958139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094523888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2004.1394669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094910230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Fast playback of First-Person View (FPV) videos reduces watching time but it also increases the perceived intensity of camera trembling and makes transient events, such as collisions, less evident. Here we propose using camera vibrations as vibrotactile feedback to support collision detection in fast video playback. To preserve camera vibrations pitch during fast playback, we use Time-Scale Modification (TSM) methods developed for audio. We show that camera vibrations delivered to the palm of the dominant hand improved collision detection performance in a pilot study. We found that reducing the levels of terrain vibrations is beneficial for collision detection. Furthermore, we found that without vibrotactile feedback participants are likely to underestimate the number of collisions in a video. Our results suggest that vibrotactile feedback has potential to support the detection of transient events during fast playback of FPV videos.", 
    "editor": [
      {
        "familyName": "Prattichizzo", 
        "givenName": "Domenico", 
        "type": "Person"
      }, 
      {
        "familyName": "Shinoda", 
        "givenName": "Hiroyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Tan", 
        "givenName": "Hong Z.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ruffaldi", 
        "givenName": "Emanuele", 
        "type": "Person"
      }, 
      {
        "familyName": "Frisoli", 
        "givenName": "Antonio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-93399-3_54", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-93398-6", 
        "978-3-319-93399-3"
      ], 
      "name": "Haptics: Science, Technology, and Applications", 
      "type": "Book"
    }, 
    "name": "Vibrotactile Feedback Improves Collision Detection in Fast Playback of First-Person View Videos", 
    "pagination": "636-647", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-93399-3_54"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e7f39ea3933e8a87aa317e8c6034cf14925a5156b36d4483ea4e1f743cc058b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104403755"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-93399-3_54", 
      "https://app.dimensions.ai/details/publication/pub.1104403755"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-93399-3_54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93399-3_54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93399-3_54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93399-3_54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93399-3_54'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-93399-3_54 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N57460f00095848349ad09065929a0cb2
4 schema:citation sg:pub.10.1007/978-3-540-30301-5_51
5 https://doi.org/10.1016/j.ijhcs.2015.08.002
6 https://doi.org/10.1016/j.neulet.2008.11.002
7 https://doi.org/10.1037/0096-1523.34.5.1053
8 https://doi.org/10.1103/physreve.56.923
9 https://doi.org/10.1109/cvpr.2015.7299109
10 https://doi.org/10.1109/hicss.2000.926728
11 https://doi.org/10.1109/icip.2001.958139
12 https://doi.org/10.1109/icme.2004.1394669
13 https://doi.org/10.1109/lsp.2013.2294023
14 https://doi.org/10.1109/tsmcc.2010.2103057
15 https://doi.org/10.1145/1121241.1121285
16 https://doi.org/10.1145/1978942.1978963
17 https://doi.org/10.1145/2601097.2601195
18 https://doi.org/10.1145/502348.502387
19 https://doi.org/10.1177/154193120404800389
20 https://doi.org/10.2307/1932409
21 https://doi.org/10.3390/app6020057
22 schema:datePublished 2018
23 schema:datePublishedReg 2018-01-01
24 schema:description Fast playback of First-Person View (FPV) videos reduces watching time but it also increases the perceived intensity of camera trembling and makes transient events, such as collisions, less evident. Here we propose using camera vibrations as vibrotactile feedback to support collision detection in fast video playback. To preserve camera vibrations pitch during fast playback, we use Time-Scale Modification (TSM) methods developed for audio. We show that camera vibrations delivered to the palm of the dominant hand improved collision detection performance in a pilot study. We found that reducing the levels of terrain vibrations is beneficial for collision detection. Furthermore, we found that without vibrotactile feedback participants are likely to underestimate the number of collisions in a video. Our results suggest that vibrotactile feedback has potential to support the detection of transient events during fast playback of FPV videos.
25 schema:editor N161c9771d12547f88452dfd7ec618cb6
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Nd36e5316ee6d4d61930aaa75967e2b17
30 schema:name Vibrotactile Feedback Improves Collision Detection in Fast Playback of First-Person View Videos
31 schema:pagination 636-647
32 schema:productId N29ce89ef73554e2b805eb57e70834840
33 N4905037665e8427eba7fbfd1efe369b9
34 Nc9bfb1416d724861b082742805631804
35 schema:publisher N07944b07e9f441fe884f57d239239fef
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104403755
37 https://doi.org/10.1007/978-3-319-93399-3_54
38 schema:sdDatePublished 2019-04-15T18:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N50700f4f36e14c4d8fee59a40531e638
41 schema:url http://link.springer.com/10.1007/978-3-319-93399-3_54
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N07944b07e9f441fe884f57d239239fef schema:location Cham
46 schema:name Springer International Publishing
47 rdf:type schema:Organisation
48 N0ac8745c90354356b38c5e23e0918056 rdf:first sg:person.013454033251.77
49 rdf:rest rdf:nil
50 N161c9771d12547f88452dfd7ec618cb6 rdf:first N5075d04c6a7c411398bd510d71c442f2
51 rdf:rest N43b7ba3f77ca431ab424f86addd1fe09
52 N1d6e4a672bee41d39489eb48d7de569d rdf:first sg:person.01101070023.41
53 rdf:rest N0ac8745c90354356b38c5e23e0918056
54 N29ce89ef73554e2b805eb57e70834840 schema:name doi
55 schema:value 10.1007/978-3-319-93399-3_54
56 rdf:type schema:PropertyValue
57 N318b06d8a41a4484a2849233d9ff3b30 schema:familyName Shinoda
58 schema:givenName Hiroyuki
59 rdf:type schema:Person
60 N43b7ba3f77ca431ab424f86addd1fe09 rdf:first N318b06d8a41a4484a2849233d9ff3b30
61 rdf:rest N5f833d0aaa3a4ae9bafa13ff0dfb2e72
62 N4905037665e8427eba7fbfd1efe369b9 schema:name readcube_id
63 schema:value 7e7f39ea3933e8a87aa317e8c6034cf14925a5156b36d4483ea4e1f743cc058b
64 rdf:type schema:PropertyValue
65 N50700f4f36e14c4d8fee59a40531e638 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N5075d04c6a7c411398bd510d71c442f2 schema:familyName Prattichizzo
68 schema:givenName Domenico
69 rdf:type schema:Person
70 N57460f00095848349ad09065929a0cb2 rdf:first sg:person.016114526753.93
71 rdf:rest N7add927df91a443b934b62defe0ec24b
72 N5f833d0aaa3a4ae9bafa13ff0dfb2e72 rdf:first N7f3f542cfef24ce0a0d025b628b366a8
73 rdf:rest Nbda055cd9da4403095da71331423dba0
74 N7add927df91a443b934b62defe0ec24b rdf:first sg:person.010145067313.58
75 rdf:rest N1d6e4a672bee41d39489eb48d7de569d
76 N7f3f542cfef24ce0a0d025b628b366a8 schema:familyName Tan
77 schema:givenName Hong Z.
78 rdf:type schema:Person
79 N90abe32a94014bb58fcc37da350623db schema:familyName Frisoli
80 schema:givenName Antonio
81 rdf:type schema:Person
82 Nbda055cd9da4403095da71331423dba0 rdf:first Nf200464cff6d48efb54b766139271a57
83 rdf:rest Ne183e7d47ac848c7a4aa96ca010a8cee
84 Nc9bfb1416d724861b082742805631804 schema:name dimensions_id
85 schema:value pub.1104403755
86 rdf:type schema:PropertyValue
87 Nd36e5316ee6d4d61930aaa75967e2b17 schema:isbn 978-3-319-93398-6
88 978-3-319-93399-3
89 schema:name Haptics: Science, Technology, and Applications
90 rdf:type schema:Book
91 Ne183e7d47ac848c7a4aa96ca010a8cee rdf:first N90abe32a94014bb58fcc37da350623db
92 rdf:rest rdf:nil
93 Nf200464cff6d48efb54b766139271a57 schema:familyName Ruffaldi
94 schema:givenName Emanuele
95 rdf:type schema:Person
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:person.010145067313.58 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
103 schema:familyName Nagano
104 schema:givenName Hikaru
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010145067313.58
106 rdf:type schema:Person
107 sg:person.01101070023.41 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
108 schema:familyName Konyo
109 schema:givenName Masashi
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101070023.41
111 rdf:type schema:Person
112 sg:person.013454033251.77 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
113 schema:familyName Tadokoro
114 schema:givenName Satoshi
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454033251.77
116 rdf:type schema:Person
117 sg:person.016114526753.93 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
118 schema:familyName Gongora
119 schema:givenName Daniel
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016114526753.93
121 rdf:type schema:Person
122 sg:pub.10.1007/978-3-540-30301-5_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021497337
123 https://doi.org/10.1007/978-3-540-30301-5_51
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijhcs.2015.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030092519
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.neulet.2008.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019756696
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1037/0096-1523.34.5.1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032396178
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.56.923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060721801
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/cvpr.2015.7299109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094392539
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/hicss.2000.926728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093766244
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/icip.2001.958139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094523888
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/icme.2004.1394669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094910230
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/lsp.2013.2294023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378585
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/tsmcc.2010.2103057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798310
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1121241.1121285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005422797
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1978942.1978963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051861663
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/2601097.2601195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040247660
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1145/502348.502387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027885620
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/154193120404800389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064048357
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
156 rdf:type schema:CreativeWork
157 https://doi.org/10.3390/app6020057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039970210
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
160 schema:name Tohoku University
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...