Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-10

AUTHORS

Sébastien Canard , David Pointcheval , Quentin Santos , Jacques Traoré

ABSTRACT

Confidentiality requires to keep information away from the eyes of non-legitimate users, while practicality necessitates to make information usable for authorized users. The former issue is addressed with cryptography, and encryption schemes. The combination of both has been shown to be possible with advanced techniques that permit to perform computations on encrypted data. Searchable encryption concentrates on the problem of extracting specific information from a ciphertext. In this paper, we focus on a concrete use-case where sensitive tokens (medical records) allow third parties to find matching properties (compatible organ donor) without revealing more information than necessary (contact information). We reduce such case to the plaintext-equality problem. But in our particular application, the message-space is of limited size or, equivalently, the entropy of the plaintexts is small: public-key existing solutions are not fully satisfactory. We then propose a suitable security model, and give an instantiation with an appropriate security analysis. More... »

PAGES

262-279

References to SciGraph publications

  • 2005. Hierarchical Identity Based Encryption with Constant Size Ciphertext in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2005
  • 2001-07-13. Lower Bounds for Discrete Logarithms and Related Problems in ADVANCES IN CRYPTOLOGY — EUROCRYPT ’97
  • 2012. Black-Box Models of Computation in Cryptology in NONE
  • 2016. Short Randomizable Signatures in TOPICS IN CRYPTOLOGY - CT-RSA 2016
  • 2004. Public Key Encryption with Keyword Search in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004
  • 2001-05-18. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing in ADVANCES IN CRYPTOLOGY — CRYPTO ’91
  • 2010. Probabilistic Public Key Encryption with Equality Test in TOPICS IN CRYPTOLOGY - CT-RSA 2010
  • 1983. Blind Signatures for Untraceable Payments in ADVANCES IN CRYPTOLOGY
  • 2013. Stronger Security Model for Public-Key Encryption with Equality Test in PAIRING-BASED CRYPTOGRAPHY – PAIRING 2012
  • 2018-03-07. Reassessing Security of Randomizable Signatures in TOPICS IN CRYPTOLOGY – CT-RSA 2018
  • 2012. Plaintext-Checkable Encryption in TOPICS IN CRYPTOLOGY – CT-RSA 2012
  • 2004. Efficient Private Matching and Set Intersection in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004
  • Book

    TITLE

    Applied Cryptography and Network Security

    ISBN

    978-3-319-93386-3
    978-3-319-93387-0

    From Grant

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93387-0_14

    DOI

    http://dx.doi.org/10.1007/978-3-319-93387-0_14

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104495722


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Data Format", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Orange (France)", 
              "id": "https://www.grid.ac/institutes/grid.89485.38", 
              "name": [
                "Orange Labs, Applied Crypto Group, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Canard", 
            "givenName": "S\u00e9bastien", 
            "id": "sg:person.014305220275.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305220275.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "DIENS, CNRS \u00c9cole normale sup\u00e9rieure, PSL University, Paris, France", 
                "INRIA, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pointcheval", 
            "givenName": "David", 
            "id": "sg:person.014622353274.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622353274.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French Institute for Research in Computer Science and Automation", 
              "id": "https://www.grid.ac/institutes/grid.5328.c", 
              "name": [
                "Orange Labs, Applied Crypto Group, Caen, France", 
                "DIENS, CNRS \u00c9cole normale sup\u00e9rieure, PSL University, Paris, France", 
                "INRIA, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santos", 
            "givenName": "Quentin", 
            "id": "sg:person.015442035024.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442035024.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Orange (France)", 
              "id": "https://www.grid.ac/institutes/grid.89485.38", 
              "name": [
                "Orange Labs, Applied Crypto Group, Caen, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Traor\u00e9", 
            "givenName": "Jacques", 
            "id": "sg:person.014375461112.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014375461112.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-27954-6_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012395574", 
              "https://doi.org/10.1007/978-3-642-27954-6_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-36334-4_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016024196", 
              "https://doi.org/10.1007/978-3-642-36334-4_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018428064", 
              "https://doi.org/10.1007/978-3-540-24676-3_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018428064", 
              "https://doi.org/10.1007/978-3-540-24676-3_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021532235", 
              "https://doi.org/10.1007/3-540-46766-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46766-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021532235", 
              "https://doi.org/10.1007/3-540-46766-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11426639_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026821672", 
              "https://doi.org/10.1007/11426639_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11426639_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026821672", 
              "https://doi.org/10.1007/11426639_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-11925-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027254483", 
              "https://doi.org/10.1007/978-3-642-11925-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-11925-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027254483", 
              "https://doi.org/10.1007/978-3-642-11925-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-8348-1990-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275698", 
              "https://doi.org/10.1007/978-3-8348-1990-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-8348-1990-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275698", 
              "https://doi.org/10.1007/978-3-8348-1990-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-29485-8_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032668521", 
              "https://doi.org/10.1007/978-3-319-29485-8_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-69053-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034033281", 
              "https://doi.org/10.1007/3-540-69053-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-69053-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034033281", 
              "https://doi.org/10.1007/3-540-69053-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0000(84)90070-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035604833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/359168.359176", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036015253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038434154", 
              "https://doi.org/10.1007/978-3-540-24676-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24676-3_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038434154", 
              "https://doi.org/10.1007/978-3-540-24676-3_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0602-4_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051902591", 
              "https://doi.org/10.1007/978-1-4757-0602-4_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76953-0_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101436377", 
              "https://doi.org/10.1007/978-3-319-76953-0_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-76953-0_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101436377", 
              "https://doi.org/10.1007/978-3-319-76953-0_17"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-10", 
        "datePublishedReg": "2018-06-10", 
        "description": "Confidentiality requires to keep information away from the eyes of non-legitimate users, while practicality necessitates to make information usable for authorized users. The former issue is addressed with cryptography, and encryption schemes. The combination of both has been shown to be possible with advanced techniques that permit to perform computations on encrypted data. Searchable encryption concentrates on the problem of extracting specific information from a ciphertext. In this paper, we focus on a concrete use-case where sensitive tokens (medical records) allow third parties to find matching properties (compatible organ donor) without revealing more information than necessary (contact information). We reduce such case to the plaintext-equality problem. But in our particular application, the message-space is of limited size or, equivalently, the entropy of the plaintexts is small: public-key existing solutions are not fully satisfactory. We then propose a suitable security model, and give an instantiation with an appropriate security analysis.", 
        "editor": [
          {
            "familyName": "Preneel", 
            "givenName": "Bart", 
            "type": "Person"
          }, 
          {
            "familyName": "Vercauteren", 
            "givenName": "Frederik", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93387-0_14", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3792429", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": {
          "isbn": [
            "978-3-319-93386-3", 
            "978-3-319-93387-0"
          ], 
          "name": "Applied Cryptography and Network Security", 
          "type": "Book"
        }, 
        "name": "Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs", 
        "pagination": "262-279", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93387-0_14"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d16d3edf10dffa5930ed0317bd82de0d28b7f50023252924660bc0b39e0e61f0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104495722"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93387-0_14", 
          "https://app.dimensions.ai/details/publication/pub.1104495722"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T04:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-93387-0_14"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93387-0_14'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93387-0_14'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93387-0_14'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93387-0_14'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      23 PREDICATES      40 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93387-0_14 schema:about anzsrc-for:08
    2 anzsrc-for:0804
    3 schema:author Neb2a2e0b158b474a994ee904892d4086
    4 schema:citation sg:pub.10.1007/11426639_26
    5 sg:pub.10.1007/3-540-46766-1_9
    6 sg:pub.10.1007/3-540-69053-0_18
    7 sg:pub.10.1007/978-1-4757-0602-4_18
    8 sg:pub.10.1007/978-3-319-29485-8_7
    9 sg:pub.10.1007/978-3-319-76953-0_17
    10 sg:pub.10.1007/978-3-540-24676-3_1
    11 sg:pub.10.1007/978-3-540-24676-3_30
    12 sg:pub.10.1007/978-3-642-11925-5_9
    13 sg:pub.10.1007/978-3-642-27954-6_21
    14 sg:pub.10.1007/978-3-642-36334-4_5
    15 sg:pub.10.1007/978-3-8348-1990-1
    16 https://doi.org/10.1016/0022-0000(84)90070-9
    17 https://doi.org/10.1145/359168.359176
    18 schema:datePublished 2018-06-10
    19 schema:datePublishedReg 2018-06-10
    20 schema:description Confidentiality requires to keep information away from the eyes of non-legitimate users, while practicality necessitates to make information usable for authorized users. The former issue is addressed with cryptography, and encryption schemes. The combination of both has been shown to be possible with advanced techniques that permit to perform computations on encrypted data. Searchable encryption concentrates on the problem of extracting specific information from a ciphertext. In this paper, we focus on a concrete use-case where sensitive tokens (medical records) allow third parties to find matching properties (compatible organ donor) without revealing more information than necessary (contact information). We reduce such case to the plaintext-equality problem. But in our particular application, the message-space is of limited size or, equivalently, the entropy of the plaintexts is small: public-key existing solutions are not fully satisfactory. We then propose a suitable security model, and give an instantiation with an appropriate security analysis.
    21 schema:editor N60550844bdd04e338c17f3506e420789
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N66c02bbf8c54439894949f20ab93e470
    26 schema:name Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs
    27 schema:pagination 262-279
    28 schema:productId N13ad54df005c4c1ea219418399dd6891
    29 N625180cbbc554b8090361d01b43b7d63
    30 Nd418c2e98f494283969cdf2bc872c93c
    31 schema:publisher N228eb0c97cc741d79d3471a5557d3c3c
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104495722
    33 https://doi.org/10.1007/978-3-319-93387-0_14
    34 schema:sdDatePublished 2019-04-16T04:59
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Ndcb6c89b26ed4f739232d86f6be05fa2
    37 schema:url https://link.springer.com/10.1007%2F978-3-319-93387-0_14
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N13ad54df005c4c1ea219418399dd6891 schema:name doi
    42 schema:value 10.1007/978-3-319-93387-0_14
    43 rdf:type schema:PropertyValue
    44 N228eb0c97cc741d79d3471a5557d3c3c schema:location Cham
    45 schema:name Springer International Publishing
    46 rdf:type schema:Organisation
    47 N4303bb5307f644cbab6c5948eee46ef4 schema:familyName Vercauteren
    48 schema:givenName Frederik
    49 rdf:type schema:Person
    50 N60550844bdd04e338c17f3506e420789 rdf:first Nb0d0394aec8b45b0bc6710a666da7235
    51 rdf:rest N6cd42ece36fc49fe98a4734af2386791
    52 N625180cbbc554b8090361d01b43b7d63 schema:name dimensions_id
    53 schema:value pub.1104495722
    54 rdf:type schema:PropertyValue
    55 N66c02bbf8c54439894949f20ab93e470 schema:isbn 978-3-319-93386-3
    56 978-3-319-93387-0
    57 schema:name Applied Cryptography and Network Security
    58 rdf:type schema:Book
    59 N6cd42ece36fc49fe98a4734af2386791 rdf:first N4303bb5307f644cbab6c5948eee46ef4
    60 rdf:rest rdf:nil
    61 N94f8930c908e436698bc28f0d6a1a6fa rdf:first sg:person.015442035024.37
    62 rdf:rest Nac46162c7d9842d8b49d2d3db8ef4de6
    63 Nac46162c7d9842d8b49d2d3db8ef4de6 rdf:first sg:person.014375461112.39
    64 rdf:rest rdf:nil
    65 Nb0d0394aec8b45b0bc6710a666da7235 schema:familyName Preneel
    66 schema:givenName Bart
    67 rdf:type schema:Person
    68 Ncf703a15acbb4518b3af0f1eaa422c82 rdf:first sg:person.014622353274.46
    69 rdf:rest N94f8930c908e436698bc28f0d6a1a6fa
    70 Nd418c2e98f494283969cdf2bc872c93c schema:name readcube_id
    71 schema:value d16d3edf10dffa5930ed0317bd82de0d28b7f50023252924660bc0b39e0e61f0
    72 rdf:type schema:PropertyValue
    73 Ndcb6c89b26ed4f739232d86f6be05fa2 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Neb2a2e0b158b474a994ee904892d4086 rdf:first sg:person.014305220275.30
    76 rdf:rest Ncf703a15acbb4518b3af0f1eaa422c82
    77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Information and Computing Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Data Format
    82 rdf:type schema:DefinedTerm
    83 sg:grant.3792429 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-93387-0_14
    84 rdf:type schema:MonetaryGrant
    85 sg:person.014305220275.30 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
    86 schema:familyName Canard
    87 schema:givenName Sébastien
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014305220275.30
    89 rdf:type schema:Person
    90 sg:person.014375461112.39 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
    91 schema:familyName Traoré
    92 schema:givenName Jacques
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014375461112.39
    94 rdf:type schema:Person
    95 sg:person.014622353274.46 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    96 schema:familyName Pointcheval
    97 schema:givenName David
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014622353274.46
    99 rdf:type schema:Person
    100 sg:person.015442035024.37 schema:affiliation https://www.grid.ac/institutes/grid.5328.c
    101 schema:familyName Santos
    102 schema:givenName Quentin
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015442035024.37
    104 rdf:type schema:Person
    105 sg:pub.10.1007/11426639_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026821672
    106 https://doi.org/10.1007/11426639_26
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/3-540-46766-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021532235
    109 https://doi.org/10.1007/3-540-46766-1_9
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/3-540-69053-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034033281
    112 https://doi.org/10.1007/3-540-69053-0_18
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-1-4757-0602-4_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051902591
    115 https://doi.org/10.1007/978-1-4757-0602-4_18
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-319-29485-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032668521
    118 https://doi.org/10.1007/978-3-319-29485-8_7
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-319-76953-0_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101436377
    121 https://doi.org/10.1007/978-3-319-76953-0_17
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-540-24676-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038434154
    124 https://doi.org/10.1007/978-3-540-24676-3_1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-540-24676-3_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018428064
    127 https://doi.org/10.1007/978-3-540-24676-3_30
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-642-11925-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027254483
    130 https://doi.org/10.1007/978-3-642-11925-5_9
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-642-27954-6_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012395574
    133 https://doi.org/10.1007/978-3-642-27954-6_21
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-642-36334-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016024196
    136 https://doi.org/10.1007/978-3-642-36334-4_5
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-8348-1990-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275698
    139 https://doi.org/10.1007/978-3-8348-1990-1
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0022-0000(84)90070-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035604833
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/359168.359176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015253
    144 rdf:type schema:CreativeWork
    145 https://www.grid.ac/institutes/grid.5328.c schema:alternateName French Institute for Research in Computer Science and Automation
    146 schema:name DIENS, CNRS École normale supérieure, PSL University, Paris, France
    147 INRIA, Paris, France
    148 Orange Labs, Applied Crypto Group, Caen, France
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
    151 schema:name Orange Labs, Applied Crypto Group, Caen, France
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...