Assessing Target Audiences of Digital Public Health Campaigns: A Computational Approach View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-14

AUTHORS

Robert F. Chew , Annice Kim , Vivian Chen , Paul Ruddle , Antonio Morgan-Lopez

ABSTRACT

As a larger proportion of society participates in social media, public health organizations are increasingly using digital campaigns to engage and educate their target audiences. Computational methods such as social network analysis and machine learning can provide social media campaigns with a rare opportunity to better understand their followers at scale. In this short paper, we demonstrate how such methods can help inform program evaluation through a case study of FDA’s The Real Cost anti-smoking Twitter campaign (@knowtherealcost). By mining publicly available Twitter data, campaigns can identify and understand key communities to help maximize reach of campaign messages to their target audiences. More... »

PAGES

286-291

Book

TITLE

Social, Cultural, and Behavioral Modeling

ISBN

978-3-319-93371-9
978-3-319-93372-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-93372-6_32

DOI

http://dx.doi.org/10.1007/978-3-319-93372-6_32

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104584925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RTI International", 
          "id": "https://www.grid.ac/institutes/grid.62562.35", 
          "name": [
            "RTI International, Research Triangle Park, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chew", 
        "givenName": "Robert F.", 
        "id": "sg:person.013501664057.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013501664057.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RTI International", 
          "id": "https://www.grid.ac/institutes/grid.62562.35", 
          "name": [
            "RTI International, Research Triangle Park, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Annice", 
        "id": "sg:person.0660177777.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177777.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern University", 
          "id": "https://www.grid.ac/institutes/grid.16753.36", 
          "name": [
            "Northwestern University, Evanston, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Vivian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Imangi Studios, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruddle", 
        "givenName": "Paul", 
        "id": "sg:person.012166031523.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166031523.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RTI International", 
          "id": "https://www.grid.ac/institutes/grid.62562.35", 
          "name": [
            "RTI International, Research Triangle Park, Durham, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morgan-Lopez", 
        "givenName": "Antonio", 
        "id": "sg:person.01251163373.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251163373.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.64.025102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006577836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.025102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006577836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10810730.2016.1233307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011435096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijerph14010042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013732387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0144827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021287763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0098679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048491501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/jmir.1911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069285814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15585/mmwr.mm6602a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0890117117720745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090941739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0890117117720745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090941739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0183537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091381531"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-14", 
    "datePublishedReg": "2018-06-14", 
    "description": "As a larger proportion of society participates in social media, public health organizations are increasingly using digital campaigns to engage and educate their target audiences. Computational methods such as social network analysis and machine learning can provide social media campaigns with a rare opportunity to better understand their followers at scale. In this short paper, we demonstrate how such methods can help inform program evaluation through a case study of FDA\u2019s The Real Cost anti-smoking Twitter campaign (@knowtherealcost). By mining publicly available Twitter data, campaigns can identify and understand key communities to help maximize reach of campaign messages to their target audiences.", 
    "editor": [
      {
        "familyName": "Thomson", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Dancy", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "familyName": "Hyder", 
        "givenName": "Ayaz", 
        "type": "Person"
      }, 
      {
        "familyName": "Bisgin", 
        "givenName": "Halil", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-93372-6_32", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-93371-9", 
        "978-3-319-93372-6"
      ], 
      "name": "Social, Cultural, and Behavioral Modeling", 
      "type": "Book"
    }, 
    "name": "Assessing Target Audiences of Digital Public Health Campaigns: A Computational Approach", 
    "pagination": "286-291", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-93372-6_32"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bded54e837fc67957228b665871b30eefc8eb9fb5cd4f9d4b444ffa2f50fbfdc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104584925"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-93372-6_32", 
      "https://app.dimensions.ai/details/publication/pub.1104584925"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-93372-6_32"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93372-6_32'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93372-6_32'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93372-6_32'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93372-6_32'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-93372-6_32 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N1585845005194e76b3998c1dd90c3869
4 schema:citation https://doi.org/10.1080/10810730.2016.1233307
5 https://doi.org/10.1103/physreve.64.025102
6 https://doi.org/10.1177/0890117117720745
7 https://doi.org/10.1371/journal.pone.0098679
8 https://doi.org/10.1371/journal.pone.0144827
9 https://doi.org/10.1371/journal.pone.0183537
10 https://doi.org/10.15585/mmwr.mm6602a2
11 https://doi.org/10.2196/jmir.1911
12 https://doi.org/10.3390/ijerph14010042
13 schema:datePublished 2018-06-14
14 schema:datePublishedReg 2018-06-14
15 schema:description As a larger proportion of society participates in social media, public health organizations are increasingly using digital campaigns to engage and educate their target audiences. Computational methods such as social network analysis and machine learning can provide social media campaigns with a rare opportunity to better understand their followers at scale. In this short paper, we demonstrate how such methods can help inform program evaluation through a case study of FDA’s The Real Cost anti-smoking Twitter campaign (@knowtherealcost). By mining publicly available Twitter data, campaigns can identify and understand key communities to help maximize reach of campaign messages to their target audiences.
16 schema:editor N343ee8bffd9b4b429bdca47664667412
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N29b32b9bd98747fda80e93e34135235d
21 schema:name Assessing Target Audiences of Digital Public Health Campaigns: A Computational Approach
22 schema:pagination 286-291
23 schema:productId Na8abde205a84411b940fb903d6b904b4
24 Nd0ae9e837fc74569b2f5408d3bd25203
25 Nfcf2d1cc818c4354b6818b3eac57fb8d
26 schema:publisher Ndc3681bb744b4cf2ae0664278bb8a748
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104584925
28 https://doi.org/10.1007/978-3-319-93372-6_32
29 schema:sdDatePublished 2019-04-16T04:59
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N68539a6ffc8046feb1693376bea094a7
32 schema:url https://link.springer.com/10.1007%2F978-3-319-93372-6_32
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0ccadab441d94089acbd28fa059c6898 rdf:first sg:person.0660177777.58
37 rdf:rest N776c89c236fb42598bf2ca7d9c278e67
38 N1279a4647a5a4dce951344b4abfa0b91 rdf:first sg:person.01251163373.42
39 rdf:rest rdf:nil
40 N1585845005194e76b3998c1dd90c3869 rdf:first sg:person.013501664057.86
41 rdf:rest N0ccadab441d94089acbd28fa059c6898
42 N1bcb049038f74b8ba823190c50987b6a rdf:first N36f2a8cce19c43fabc8aef4758c6927a
43 rdf:rest Nce8511dfae2e40d49e86d5c79f1e04fe
44 N29b32b9bd98747fda80e93e34135235d schema:isbn 978-3-319-93371-9
45 978-3-319-93372-6
46 schema:name Social, Cultural, and Behavioral Modeling
47 rdf:type schema:Book
48 N2afaeda9e54146118760f982057bd318 rdf:first Nde69f89b648b48409f112e5f412e99a5
49 rdf:rest rdf:nil
50 N343ee8bffd9b4b429bdca47664667412 rdf:first N7df645ec39f44affa7ed4453e1654c66
51 rdf:rest N1bcb049038f74b8ba823190c50987b6a
52 N36f2a8cce19c43fabc8aef4758c6927a schema:familyName Dancy
53 schema:givenName Christopher
54 rdf:type schema:Person
55 N68539a6ffc8046feb1693376bea094a7 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N6b82448c75cb4dfa9f816ab69dac4ca4 schema:affiliation https://www.grid.ac/institutes/grid.16753.36
58 schema:familyName Chen
59 schema:givenName Vivian
60 rdf:type schema:Person
61 N776c89c236fb42598bf2ca7d9c278e67 rdf:first N6b82448c75cb4dfa9f816ab69dac4ca4
62 rdf:rest N9b669f500eb846d6892636bfec2fb93b
63 N7df645ec39f44affa7ed4453e1654c66 schema:familyName Thomson
64 schema:givenName Robert
65 rdf:type schema:Person
66 N9b669f500eb846d6892636bfec2fb93b rdf:first sg:person.012166031523.06
67 rdf:rest N1279a4647a5a4dce951344b4abfa0b91
68 Na8abde205a84411b940fb903d6b904b4 schema:name readcube_id
69 schema:value bded54e837fc67957228b665871b30eefc8eb9fb5cd4f9d4b444ffa2f50fbfdc
70 rdf:type schema:PropertyValue
71 Nc77d57d732354dc9b69ce0d110bf5d14 schema:familyName Hyder
72 schema:givenName Ayaz
73 rdf:type schema:Person
74 Nce8511dfae2e40d49e86d5c79f1e04fe rdf:first Nc77d57d732354dc9b69ce0d110bf5d14
75 rdf:rest N2afaeda9e54146118760f982057bd318
76 Nd0ae9e837fc74569b2f5408d3bd25203 schema:name doi
77 schema:value 10.1007/978-3-319-93372-6_32
78 rdf:type schema:PropertyValue
79 Ndc3681bb744b4cf2ae0664278bb8a748 schema:location Cham
80 schema:name Springer International Publishing
81 rdf:type schema:Organisation
82 Nde69f89b648b48409f112e5f412e99a5 schema:familyName Bisgin
83 schema:givenName Halil
84 rdf:type schema:Person
85 Nfbbe65b8cd6c4977a1947743f5d98b2a schema:name Imangi Studios, Raleigh, NC, USA
86 rdf:type schema:Organization
87 Nfcf2d1cc818c4354b6818b3eac57fb8d schema:name dimensions_id
88 schema:value pub.1104584925
89 rdf:type schema:PropertyValue
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
94 schema:name Public Health and Health Services
95 rdf:type schema:DefinedTerm
96 sg:person.012166031523.06 schema:affiliation Nfbbe65b8cd6c4977a1947743f5d98b2a
97 schema:familyName Ruddle
98 schema:givenName Paul
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166031523.06
100 rdf:type schema:Person
101 sg:person.01251163373.42 schema:affiliation https://www.grid.ac/institutes/grid.62562.35
102 schema:familyName Morgan-Lopez
103 schema:givenName Antonio
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251163373.42
105 rdf:type schema:Person
106 sg:person.013501664057.86 schema:affiliation https://www.grid.ac/institutes/grid.62562.35
107 schema:familyName Chew
108 schema:givenName Robert F.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013501664057.86
110 rdf:type schema:Person
111 sg:person.0660177777.58 schema:affiliation https://www.grid.ac/institutes/grid.62562.35
112 schema:familyName Kim
113 schema:givenName Annice
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660177777.58
115 rdf:type schema:Person
116 https://doi.org/10.1080/10810730.2016.1233307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011435096
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physreve.64.025102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006577836
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1177/0890117117720745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090941739
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1371/journal.pone.0098679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048491501
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1371/journal.pone.0144827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021287763
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1371/journal.pone.0183537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091381531
127 rdf:type schema:CreativeWork
128 https://doi.org/10.15585/mmwr.mm6602a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396325
129 rdf:type schema:CreativeWork
130 https://doi.org/10.2196/jmir.1911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069285814
131 rdf:type schema:CreativeWork
132 https://doi.org/10.3390/ijerph14010042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013732387
133 rdf:type schema:CreativeWork
134 https://www.grid.ac/institutes/grid.16753.36 schema:alternateName Northwestern University
135 schema:name Northwestern University, Evanston, IL, USA
136 rdf:type schema:Organization
137 https://www.grid.ac/institutes/grid.62562.35 schema:alternateName RTI International
138 schema:name RTI International, Research Triangle Park, Durham, NC, USA
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...