A Kernelized Morphable Model for 3D Brain Tumor Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-06

AUTHORS

David A. Jimenez , Hernán F. García , Andres M. Álvarez , Álvaro A. Orozco , G. Holguín

ABSTRACT

Abnormal tissue analysis in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common techniques use linear representations of the input data which makes unsuitable to model complex shapes as brain tumors. In this paper, we present a kernelized morphable model (3D-KMM) for brain tumor analysis in which the model variations are captured through nonlinear mappings by using kernel principal component analysis. We learn complex shape variations through a high-dimensional representation of the input data. Then from the trained model, we recover the pre-images from the features vectors and perform a non-rigid matching procedure to fit the modeled tumor to a given brain volume. The results show that by using a kernelized morphable model, the non-rigid properties (i.e., nonlinearities and shape variations) of the abnormal tissues can be learned. Finally, our approach proves to be more accurate than the classic morphable model for shape analysis. More... »

PAGES

529-537

References to SciGraph publications

  • 2011-02-11. Cerebral White Matter Segmentation using Probabilistic Graph Cut Algorithm in MULTI MODALITY STATE-OF-THE-ART MEDICAL IMAGE SEGMENTATION AND REGISTRATION METHODOLOGIES
  • 1997. Kernel principal component analysis in ARTIFICIAL NEURAL NETWORKS — ICANN'97
  • 1997. Gaussian random fields on sub-manifolds for characterizing brain surfaces in INFORMATION PROCESSING IN MEDICAL IMAGING
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-319-92999-6
    978-3-319-93000-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_60

    DOI

    http://dx.doi.org/10.1007/978-3-319-93000-8_60

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104412411


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jimenez", 
            "givenName": "David A.", 
            "id": "sg:person.07703364717.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703364717.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda", 
            "givenName": "Hern\u00e1n F.", 
            "id": "sg:person.014220534313.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220534313.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u00c1lvarez", 
            "givenName": "Andres M.", 
            "id": "sg:person.012757230130.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orozco", 
            "givenName": "\u00c1lvaro A.", 
            "id": "sg:person.013562027545.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holgu\u00edn", 
            "givenName": "G.", 
            "id": "sg:person.013105175141.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105175141.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.2196/jmir.2930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000212247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8204-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006883454", 
              "https://doi.org/10.1007/978-1-4419-8204-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-8204-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006883454", 
              "https://doi.org/10.1007/978-1-4419-8204-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63046-5_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026660197", 
              "https://doi.org/10.1007/3-540-63046-5_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artmed.2016.08.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042471850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/311535.311556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048557873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0020217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052658614", 
              "https://doi.org/10.1007/bfb0020217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.865192", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmm.2009.2017629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061697628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2004.837781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsip.2015.8.9.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067241268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsip.2015.8.9.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067241268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2007.383165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093251828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2013.245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094372456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2013.245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094372456"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-06", 
        "datePublishedReg": "2018-06-06", 
        "description": "Abnormal tissue analysis in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common techniques use linear representations of the input data which makes unsuitable to model complex shapes as brain tumors. In this paper, we present a kernelized morphable model (3D-KMM) for brain tumor analysis in which the model variations are captured through nonlinear mappings by using kernel principal component analysis. We learn complex shape variations through a high-dimensional representation of the input data. Then from the trained model, we recover the pre-images from the features vectors and perform a non-rigid matching procedure to fit the modeled tumor to a given brain volume. The results show that by using a kernelized morphable model, the non-rigid properties (i.e., nonlinearities and shape variations) of the abnormal tissues can be learned. Finally, our approach proves to be more accurate than the classic morphable model for shape analysis.", 
        "editor": [
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }, 
          {
            "familyName": "Karray", 
            "givenName": "Fakhri", 
            "type": "Person"
          }, 
          {
            "familyName": "ter Haar Romeny", 
            "givenName": "Bart", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93000-8_60", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-92999-6", 
            "978-3-319-93000-8"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "A Kernelized Morphable Model for 3D Brain Tumor Analysis", 
        "pagination": "529-537", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93000-8_60"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f624cd1c02acf3c5d88f5d09626614d5f45be963a06b8bae2c2140fb2491c892"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104412411"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93000-8_60", 
          "https://app.dimensions.ai/details/publication/pub.1104412411"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100801_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-93000-8_60"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_60'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_60'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_60'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_60'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93000-8_60 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6dfa2e5d89bc41d5bd7df0939a2cc676
    4 schema:citation sg:pub.10.1007/3-540-63046-5_30
    5 sg:pub.10.1007/978-1-4419-8204-9_2
    6 sg:pub.10.1007/bfb0020217
    7 https://doi.org/10.1006/cviu.1995.1004
    8 https://doi.org/10.1016/j.artmed.2016.08.004
    9 https://doi.org/10.1109/34.865192
    10 https://doi.org/10.1109/cvpr.2007.383165
    11 https://doi.org/10.1109/cvpr.2013.245
    12 https://doi.org/10.1109/tmm.2009.2017629
    13 https://doi.org/10.1109/tnn.2004.837781
    14 https://doi.org/10.1145/311535.311556
    15 https://doi.org/10.14257/ijsip.2015.8.9.24
    16 https://doi.org/10.2196/jmir.2930
    17 schema:datePublished 2018-06-06
    18 schema:datePublishedReg 2018-06-06
    19 schema:description Abnormal tissue analysis in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common techniques use linear representations of the input data which makes unsuitable to model complex shapes as brain tumors. In this paper, we present a kernelized morphable model (3D-KMM) for brain tumor analysis in which the model variations are captured through nonlinear mappings by using kernel principal component analysis. We learn complex shape variations through a high-dimensional representation of the input data. Then from the trained model, we recover the pre-images from the features vectors and perform a non-rigid matching procedure to fit the modeled tumor to a given brain volume. The results show that by using a kernelized morphable model, the non-rigid properties (i.e., nonlinearities and shape variations) of the abnormal tissues can be learned. Finally, our approach proves to be more accurate than the classic morphable model for shape analysis.
    20 schema:editor Na06417dda9144bde911fb43c06359068
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N952683dc1d39494db0a8880e0285d5b1
    25 schema:name A Kernelized Morphable Model for 3D Brain Tumor Analysis
    26 schema:pagination 529-537
    27 schema:productId N5f067b49f18c4a868f56723bb1413f8f
    28 N62d90a8687904bfba7825cbdc1bf8959
    29 Nfddc0b42a28b4fc1ad71a7b6971a5cfd
    30 schema:publisher Ncc2c91cc127d476ab263dd248661a559
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412411
    32 https://doi.org/10.1007/978-3-319-93000-8_60
    33 schema:sdDatePublished 2019-04-16T05:01
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Ncc0c4602e80e42cda779267e1979cfa7
    36 schema:url https://link.springer.com/10.1007%2F978-3-319-93000-8_60
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N14e376aaf7e5421da98a6e8cc3d90e9b rdf:first sg:person.013105175141.29
    41 rdf:rest rdf:nil
    42 N3753545c76414ee2a71743dddaabb929 rdf:first sg:person.012757230130.96
    43 rdf:rest Nef834b17e4634ff9a34d9eb48496ee57
    44 N5f067b49f18c4a868f56723bb1413f8f schema:name dimensions_id
    45 schema:value pub.1104412411
    46 rdf:type schema:PropertyValue
    47 N62d90a8687904bfba7825cbdc1bf8959 schema:name doi
    48 schema:value 10.1007/978-3-319-93000-8_60
    49 rdf:type schema:PropertyValue
    50 N6dfa2e5d89bc41d5bd7df0939a2cc676 rdf:first sg:person.07703364717.35
    51 rdf:rest N7e0e80c50b8648f7acd40b55a14c50b9
    52 N7e0e80c50b8648f7acd40b55a14c50b9 rdf:first sg:person.014220534313.29
    53 rdf:rest N3753545c76414ee2a71743dddaabb929
    54 N8435a41a08cc472884b4464286ea83c3 schema:familyName Karray
    55 schema:givenName Fakhri
    56 rdf:type schema:Person
    57 N90ab6c17587840b09a192cdc71f7785c rdf:first N8435a41a08cc472884b4464286ea83c3
    58 rdf:rest Na652dcf15cf74b309d76c2184bb9b4da
    59 N952683dc1d39494db0a8880e0285d5b1 schema:isbn 978-3-319-92999-6
    60 978-3-319-93000-8
    61 schema:name Image Analysis and Recognition
    62 rdf:type schema:Book
    63 Na06417dda9144bde911fb43c06359068 rdf:first Nf3b4de8e4e084a7492d30feac81fc215
    64 rdf:rest N90ab6c17587840b09a192cdc71f7785c
    65 Na652dcf15cf74b309d76c2184bb9b4da rdf:first Nfe11346540cf4df1aff58a9b961467e7
    66 rdf:rest rdf:nil
    67 Ncc0c4602e80e42cda779267e1979cfa7 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 Ncc2c91cc127d476ab263dd248661a559 schema:location Cham
    70 schema:name Springer International Publishing
    71 rdf:type schema:Organisation
    72 Nef834b17e4634ff9a34d9eb48496ee57 rdf:first sg:person.013562027545.25
    73 rdf:rest N14e376aaf7e5421da98a6e8cc3d90e9b
    74 Nf3b4de8e4e084a7492d30feac81fc215 schema:familyName Campilho
    75 schema:givenName Aurélio
    76 rdf:type schema:Person
    77 Nfddc0b42a28b4fc1ad71a7b6971a5cfd schema:name readcube_id
    78 schema:value f624cd1c02acf3c5d88f5d09626614d5f45be963a06b8bae2c2140fb2491c892
    79 rdf:type schema:PropertyValue
    80 Nfe11346540cf4df1aff58a9b961467e7 schema:familyName ter Haar Romeny
    81 schema:givenName Bart
    82 rdf:type schema:Person
    83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Information and Computing Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Artificial Intelligence and Image Processing
    88 rdf:type schema:DefinedTerm
    89 sg:person.012757230130.96 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    90 schema:familyName Álvarez
    91 schema:givenName Andres M.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96
    93 rdf:type schema:Person
    94 sg:person.013105175141.29 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    95 schema:familyName Holguín
    96 schema:givenName G.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013105175141.29
    98 rdf:type schema:Person
    99 sg:person.013562027545.25 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    100 schema:familyName Orozco
    101 schema:givenName Álvaro A.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25
    103 rdf:type schema:Person
    104 sg:person.014220534313.29 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    105 schema:familyName García
    106 schema:givenName Hernán F.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220534313.29
    108 rdf:type schema:Person
    109 sg:person.07703364717.35 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    110 schema:familyName Jimenez
    111 schema:givenName David A.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703364717.35
    113 rdf:type schema:Person
    114 sg:pub.10.1007/3-540-63046-5_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026660197
    115 https://doi.org/10.1007/3-540-63046-5_30
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-1-4419-8204-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006883454
    118 https://doi.org/10.1007/978-1-4419-8204-9_2
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bfb0020217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052658614
    121 https://doi.org/10.1007/bfb0020217
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.artmed.2016.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042471850
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/34.865192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157118
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/cvpr.2007.383165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093251828
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/cvpr.2013.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094372456
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/tmm.2009.2017629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697628
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/tnn.2004.837781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716795
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/311535.311556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048557873
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.14257/ijsip.2015.8.9.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067241268
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.2196/jmir.2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000212247
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
    144 schema:name Grupo de Investigación en Automática, Universidad Tecnológica de Pereira, Pereira, Colombia
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...