Emotion Assessment Using Adaptive Learning-Based Relevance Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-06

AUTHORS

C. Torres-Valencia , A. Alvarez-Meza , A. Orozco-Gutierrez

ABSTRACT

The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks. More... »

PAGES

193-200

References to SciGraph publications

  • 2017-03. SVM-based feature selection methods for emotion recognition from multimodal data in JOURNAL ON MULTIMODAL USER INTERFACES
  • 2015-06. Power spectral density and coherence analysis of Alzheimer’s EEG in COGNITIVE NEURODYNAMICS
  • 2017. Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis in NATURAL AND ARTIFICIAL COMPUTATION FOR BIOMEDICINE AND NEUROSCIENCE
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-319-92999-6
    978-3-319-93000-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22

    DOI

    http://dx.doi.org/10.1007/978-3-319-93000-8_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104412369


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres-Valencia", 
            "givenName": "C.", 
            "id": "sg:person.010435251713.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alvarez-Meza", 
            "givenName": "A.", 
            "id": "sg:person.01261456124.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orozco-Gutierrez", 
            "givenName": "A.", 
            "id": "sg:person.012201216001.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008939850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008939850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12193-016-0222-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015594740", 
              "https://doi.org/10.1007/s12193-016-0222-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11571-014-9325-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032495656", 
              "https://doi.org/10.1007/s11571-014-9325-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fncom.2016.00055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038544549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2015.09.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040366465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046111502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/brain.2011.0008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047424808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-affc.2011.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-affc.2011.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/embc.2016.7590800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084497943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-59740-9_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086391548", 
              "https://doi.org/10.1007/978-3-319-59740-9_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470608593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470608593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118622162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106893131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-06", 
        "datePublishedReg": "2018-06-06", 
        "description": "The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.", 
        "editor": [
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }, 
          {
            "familyName": "Karray", 
            "givenName": "Fakhri", 
            "type": "Person"
          }, 
          {
            "familyName": "ter Haar Romeny", 
            "givenName": "Bart", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93000-8_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-92999-6", 
            "978-3-319-93000-8"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "Emotion Assessment Using Adaptive Learning-Based Relevance Analysis", 
        "pagination": "193-200", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93000-8_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104412369"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93000-8_22", 
          "https://app.dimensions.ai/details/publication/pub.1104412369"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100806_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-93000-8_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93000-8_22 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N4f3a6e15e581478c8941b0200bc4792e
    4 schema:citation sg:pub.10.1007/978-3-319-59740-9_35
    5 sg:pub.10.1007/s11571-014-9325-x
    6 sg:pub.10.1007/s12193-016-0222-y
    7 https://doi.org/10.1002/9780470608593
    8 https://doi.org/10.1002/9781118622162
    9 https://doi.org/10.1016/j.bspc.2013.12.003
    10 https://doi.org/10.1016/j.eswa.2014.03.050
    11 https://doi.org/10.1016/j.neucom.2015.09.085
    12 https://doi.org/10.1089/brain.2011.0008
    13 https://doi.org/10.1109/embc.2016.7590800
    14 https://doi.org/10.1109/t-affc.2011.15
    15 https://doi.org/10.1109/t-affc.2011.37
    16 https://doi.org/10.3389/fncom.2016.00055
    17 schema:datePublished 2018-06-06
    18 schema:datePublishedReg 2018-06-06
    19 schema:description The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.
    20 schema:editor Nff08625fb9fc486bab1703f706867461
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf Nf2bad5d1495546f5a79b6b5a89f23486
    25 schema:name Emotion Assessment Using Adaptive Learning-Based Relevance Analysis
    26 schema:pagination 193-200
    27 schema:productId N37f950fb5d0442d897a9f010372139ff
    28 N88383e44099c4a2cb9c26ae1611fca8d
    29 N8f7ed59af13e4dbd854208c8ee1823c7
    30 schema:publisher Ne6fe32f5eb14426890f3a15d922e4fe8
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412369
    32 https://doi.org/10.1007/978-3-319-93000-8_22
    33 schema:sdDatePublished 2019-04-16T05:01
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nd2dfde1a82e046a3903f5dc20d5f853a
    36 schema:url https://link.springer.com/10.1007%2F978-3-319-93000-8_22
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N0471a18ae46f4c78b5eceb4e947198bd schema:familyName ter Haar Romeny
    41 schema:givenName Bart
    42 rdf:type schema:Person
    43 N086ad3290c624ecbb29a1b6575bbedea rdf:first sg:person.012201216001.24
    44 rdf:rest rdf:nil
    45 N0dabeda9b0fb40b68730be428b6c4a34 rdf:first N4be6997213bc415c867fc57a2f0f7cea
    46 rdf:rest N40d6f625004f4c36892733d151e38da5
    47 N3586e97fed1d44e882f418b4b73b9403 rdf:first sg:person.01261456124.28
    48 rdf:rest N086ad3290c624ecbb29a1b6575bbedea
    49 N37f950fb5d0442d897a9f010372139ff schema:name readcube_id
    50 schema:value d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f
    51 rdf:type schema:PropertyValue
    52 N40d6f625004f4c36892733d151e38da5 rdf:first N0471a18ae46f4c78b5eceb4e947198bd
    53 rdf:rest rdf:nil
    54 N4be6997213bc415c867fc57a2f0f7cea schema:familyName Karray
    55 schema:givenName Fakhri
    56 rdf:type schema:Person
    57 N4f3a6e15e581478c8941b0200bc4792e rdf:first sg:person.010435251713.18
    58 rdf:rest N3586e97fed1d44e882f418b4b73b9403
    59 N84731b0ff07344ccb461daf4283124f1 schema:familyName Campilho
    60 schema:givenName Aurélio
    61 rdf:type schema:Person
    62 N88383e44099c4a2cb9c26ae1611fca8d schema:name doi
    63 schema:value 10.1007/978-3-319-93000-8_22
    64 rdf:type schema:PropertyValue
    65 N8f7ed59af13e4dbd854208c8ee1823c7 schema:name dimensions_id
    66 schema:value pub.1104412369
    67 rdf:type schema:PropertyValue
    68 Nd2dfde1a82e046a3903f5dc20d5f853a schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Ne6fe32f5eb14426890f3a15d922e4fe8 schema:location Cham
    71 schema:name Springer International Publishing
    72 rdf:type schema:Organisation
    73 Nf2bad5d1495546f5a79b6b5a89f23486 schema:isbn 978-3-319-92999-6
    74 978-3-319-93000-8
    75 schema:name Image Analysis and Recognition
    76 rdf:type schema:Book
    77 Nff08625fb9fc486bab1703f706867461 rdf:first N84731b0ff07344ccb461daf4283124f1
    78 rdf:rest N0dabeda9b0fb40b68730be428b6c4a34
    79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Medical and Health Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Neurosciences
    84 rdf:type schema:DefinedTerm
    85 sg:person.010435251713.18 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    86 schema:familyName Torres-Valencia
    87 schema:givenName C.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18
    89 rdf:type schema:Person
    90 sg:person.012201216001.24 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    91 schema:familyName Orozco-Gutierrez
    92 schema:givenName A.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
    94 rdf:type schema:Person
    95 sg:person.01261456124.28 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    96 schema:familyName Alvarez-Meza
    97 schema:givenName A.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-319-59740-9_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086391548
    101 https://doi.org/10.1007/978-3-319-59740-9_35
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11571-014-9325-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495656
    104 https://doi.org/10.1007/s11571-014-9325-x
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12193-016-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594740
    107 https://doi.org/10.1007/s12193-016-0222-y
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/9780470608593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661998
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/9781118622162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893131
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.bspc.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008939850
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.eswa.2014.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046111502
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.neucom.2015.09.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040366465
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1089/brain.2011.0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424808
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/embc.2016.7590800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084497943
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/t-affc.2011.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446966
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/t-affc.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446989
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.3389/fncom.2016.00055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544549
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
    130 schema:name Automatics Research Group, Universidad Tecnológica de Pereira, Pereira - Risaralda, Colombia
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...