Emotion Assessment Using Adaptive Learning-Based Relevance Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-06

AUTHORS

C. Torres-Valencia , A. Alvarez-Meza , A. Orozco-Gutierrez

ABSTRACT

The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks. More... »

PAGES

193-200

Book

TITLE

Image Analysis and Recognition

ISBN

978-3-319-92999-6
978-3-319-93000-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22

DOI

http://dx.doi.org/10.1007/978-3-319-93000-8_22

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104412369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres-Valencia", 
        "givenName": "C.", 
        "id": "sg:person.010435251713.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alvarez-Meza", 
        "givenName": "A.", 
        "id": "sg:person.01261456124.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco-Gutierrez", 
        "givenName": "A.", 
        "id": "sg:person.012201216001.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008939850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008939850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12193-016-0222-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015594740", 
          "https://doi.org/10.1007/s12193-016-0222-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-014-9325-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032495656", 
          "https://doi.org/10.1007/s11571-014-9325-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncom.2016.00055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038544549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.09.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040366465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046111502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/brain.2011.0008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047424808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-affc.2011.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2016.7590800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084497943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59740-9_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086391548", 
          "https://doi.org/10.1007/978-3-319-59740-9_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470608593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470608593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118622162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106893131"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-06", 
    "datePublishedReg": "2018-06-06", 
    "description": "The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.", 
    "editor": [
      {
        "familyName": "Campilho", 
        "givenName": "Aur\u00e9lio", 
        "type": "Person"
      }, 
      {
        "familyName": "Karray", 
        "givenName": "Fakhri", 
        "type": "Person"
      }, 
      {
        "familyName": "ter Haar Romeny", 
        "givenName": "Bart", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-93000-8_22", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-92999-6", 
        "978-3-319-93000-8"
      ], 
      "name": "Image Analysis and Recognition", 
      "type": "Book"
    }, 
    "name": "Emotion Assessment Using Adaptive Learning-Based Relevance Analysis", 
    "pagination": "193-200", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-93000-8_22"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104412369"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-93000-8_22", 
      "https://app.dimensions.ai/details/publication/pub.1104412369"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100806_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-93000-8_22"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-93000-8_22 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N4daed4caa07f4df981b531b129027a61
4 schema:citation sg:pub.10.1007/978-3-319-59740-9_35
5 sg:pub.10.1007/s11571-014-9325-x
6 sg:pub.10.1007/s12193-016-0222-y
7 https://doi.org/10.1002/9780470608593
8 https://doi.org/10.1002/9781118622162
9 https://doi.org/10.1016/j.bspc.2013.12.003
10 https://doi.org/10.1016/j.eswa.2014.03.050
11 https://doi.org/10.1016/j.neucom.2015.09.085
12 https://doi.org/10.1089/brain.2011.0008
13 https://doi.org/10.1109/embc.2016.7590800
14 https://doi.org/10.1109/t-affc.2011.15
15 https://doi.org/10.1109/t-affc.2011.37
16 https://doi.org/10.3389/fncom.2016.00055
17 schema:datePublished 2018-06-06
18 schema:datePublishedReg 2018-06-06
19 schema:description The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.
20 schema:editor Nf12442e211ab4a6b812e768cc0d8025c
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N374c73a3d97d483192b868c4c33c4057
25 schema:name Emotion Assessment Using Adaptive Learning-Based Relevance Analysis
26 schema:pagination 193-200
27 schema:productId N464f15814b244016b5cb468bc3bcb540
28 N77ea4184bc3f4cacba8e069aac7e50c8
29 Nf3a196ea217644b298e954b798430670
30 schema:publisher Ne50e8d034c264f8c87665dda46049f15
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412369
32 https://doi.org/10.1007/978-3-319-93000-8_22
33 schema:sdDatePublished 2019-04-16T05:01
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8812ad6f223f49f8b9e504e7c1bf145e
36 schema:url https://link.springer.com/10.1007%2F978-3-319-93000-8_22
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N01912997f1524d6ab099c87aee449b23 schema:familyName Karray
41 schema:givenName Fakhri
42 rdf:type schema:Person
43 N1c8745c304da44359d07f373d53b05cf schema:familyName ter Haar Romeny
44 schema:givenName Bart
45 rdf:type schema:Person
46 N374c73a3d97d483192b868c4c33c4057 schema:isbn 978-3-319-92999-6
47 978-3-319-93000-8
48 schema:name Image Analysis and Recognition
49 rdf:type schema:Book
50 N464f15814b244016b5cb468bc3bcb540 schema:name dimensions_id
51 schema:value pub.1104412369
52 rdf:type schema:PropertyValue
53 N4ab2f20bccdd47dc8ee0cea8e7267275 rdf:first sg:person.012201216001.24
54 rdf:rest rdf:nil
55 N4daed4caa07f4df981b531b129027a61 rdf:first sg:person.010435251713.18
56 rdf:rest Ne438ef67ca924f6f889d78e04faa4de5
57 N77ea4184bc3f4cacba8e069aac7e50c8 schema:name readcube_id
58 schema:value d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f
59 rdf:type schema:PropertyValue
60 N7a5838265b324d64ab62936b05028d06 schema:familyName Campilho
61 schema:givenName Aurélio
62 rdf:type schema:Person
63 N8812ad6f223f49f8b9e504e7c1bf145e schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N89757ac099e74fd2b77a28db802ab498 rdf:first N01912997f1524d6ab099c87aee449b23
66 rdf:rest Ne134fb4bd0f54f5986b8f3e4bff47ccb
67 Ne134fb4bd0f54f5986b8f3e4bff47ccb rdf:first N1c8745c304da44359d07f373d53b05cf
68 rdf:rest rdf:nil
69 Ne438ef67ca924f6f889d78e04faa4de5 rdf:first sg:person.01261456124.28
70 rdf:rest N4ab2f20bccdd47dc8ee0cea8e7267275
71 Ne50e8d034c264f8c87665dda46049f15 schema:location Cham
72 schema:name Springer International Publishing
73 rdf:type schema:Organisation
74 Nf12442e211ab4a6b812e768cc0d8025c rdf:first N7a5838265b324d64ab62936b05028d06
75 rdf:rest N89757ac099e74fd2b77a28db802ab498
76 Nf3a196ea217644b298e954b798430670 schema:name doi
77 schema:value 10.1007/978-3-319-93000-8_22
78 rdf:type schema:PropertyValue
79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
80 schema:name Medical and Health Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
83 schema:name Neurosciences
84 rdf:type schema:DefinedTerm
85 sg:person.010435251713.18 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
86 schema:familyName Torres-Valencia
87 schema:givenName C.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18
89 rdf:type schema:Person
90 sg:person.012201216001.24 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
91 schema:familyName Orozco-Gutierrez
92 schema:givenName A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
94 rdf:type schema:Person
95 sg:person.01261456124.28 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
96 schema:familyName Alvarez-Meza
97 schema:givenName A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-319-59740-9_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086391548
101 https://doi.org/10.1007/978-3-319-59740-9_35
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11571-014-9325-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495656
104 https://doi.org/10.1007/s11571-014-9325-x
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s12193-016-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594740
107 https://doi.org/10.1007/s12193-016-0222-y
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/9780470608593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661998
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1002/9781118622162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893131
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.bspc.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008939850
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.eswa.2014.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046111502
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.neucom.2015.09.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040366465
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1089/brain.2011.0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424808
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/embc.2016.7590800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084497943
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/t-affc.2011.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446966
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/t-affc.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446989
126 rdf:type schema:CreativeWork
127 https://doi.org/10.3389/fncom.2016.00055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544549
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
130 schema:name Automatics Research Group, Universidad Tecnológica de Pereira, Pereira - Risaralda, Colombia
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...