Emotion Assessment Using Adaptive Learning-Based Relevance Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-06

AUTHORS

C. Torres-Valencia , A. Alvarez-Meza , A. Orozco-Gutierrez

ABSTRACT

The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks. More... »

PAGES

193-200

References to SciGraph publications

  • 2017-03. SVM-based feature selection methods for emotion recognition from multimodal data in JOURNAL ON MULTIMODAL USER INTERFACES
  • 2015-06. Power spectral density and coherence analysis of Alzheimer’s EEG in COGNITIVE NEURODYNAMICS
  • 2017. Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis in NATURAL AND ARTIFICIAL COMPUTATION FOR BIOMEDICINE AND NEUROSCIENCE
  • Book

    TITLE

    Image Analysis and Recognition

    ISBN

    978-3-319-92999-6
    978-3-319-93000-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22

    DOI

    http://dx.doi.org/10.1007/978-3-319-93000-8_22

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104412369


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torres-Valencia", 
            "givenName": "C.", 
            "id": "sg:person.010435251713.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alvarez-Meza", 
            "givenName": "A.", 
            "id": "sg:person.01261456124.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technological University of Pereira", 
              "id": "https://www.grid.ac/institutes/grid.412256.6", 
              "name": [
                "Automatics Research Group, Universidad Tecnol\u00f3gica de Pereira, Pereira - Risaralda, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Orozco-Gutierrez", 
            "givenName": "A.", 
            "id": "sg:person.012201216001.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008939850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bspc.2013.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008939850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12193-016-0222-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015594740", 
              "https://doi.org/10.1007/s12193-016-0222-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11571-014-9325-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032495656", 
              "https://doi.org/10.1007/s11571-014-9325-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fncom.2016.00055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038544549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2015.09.085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040366465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2014.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046111502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/brain.2011.0008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047424808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-affc.2011.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/t-affc.2011.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/embc.2016.7590800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084497943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-59740-9_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086391548", 
              "https://doi.org/10.1007/978-3-319-59740-9_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470608593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9780470608593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118622162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106893131"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-06", 
        "datePublishedReg": "2018-06-06", 
        "description": "The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.", 
        "editor": [
          {
            "familyName": "Campilho", 
            "givenName": "Aur\u00e9lio", 
            "type": "Person"
          }, 
          {
            "familyName": "Karray", 
            "givenName": "Fakhri", 
            "type": "Person"
          }, 
          {
            "familyName": "ter Haar Romeny", 
            "givenName": "Bart", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-93000-8_22", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-92999-6", 
            "978-3-319-93000-8"
          ], 
          "name": "Image Analysis and Recognition", 
          "type": "Book"
        }, 
        "name": "Emotion Assessment Using Adaptive Learning-Based Relevance Analysis", 
        "pagination": "193-200", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-93000-8_22"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104412369"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-93000-8_22", 
          "https://app.dimensions.ai/details/publication/pub.1104412369"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T05:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100806_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-93000-8_22"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-93000-8_22'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      23 PREDICATES      39 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-93000-8_22 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N7fc2a6d2cb2f4903b276d97d093c7ac1
    4 schema:citation sg:pub.10.1007/978-3-319-59740-9_35
    5 sg:pub.10.1007/s11571-014-9325-x
    6 sg:pub.10.1007/s12193-016-0222-y
    7 https://doi.org/10.1002/9780470608593
    8 https://doi.org/10.1002/9781118622162
    9 https://doi.org/10.1016/j.bspc.2013.12.003
    10 https://doi.org/10.1016/j.eswa.2014.03.050
    11 https://doi.org/10.1016/j.neucom.2015.09.085
    12 https://doi.org/10.1089/brain.2011.0008
    13 https://doi.org/10.1109/embc.2016.7590800
    14 https://doi.org/10.1109/t-affc.2011.15
    15 https://doi.org/10.1109/t-affc.2011.37
    16 https://doi.org/10.3389/fncom.2016.00055
    17 schema:datePublished 2018-06-06
    18 schema:datePublishedReg 2018-06-06
    19 schema:description The study of brain electrical activity (BEA) allows to describe and analyze the different cognitive and physiological process that occurs inside the human body. The Electroncephalogram (EEG) is often chosen over other neuroimaging techniques, but the non-stationarity nature of the EEG data and the variability between subjects have to be sorted to design reliable methodologies for neural activity identification. In this work, we propose the use of adaptive filtering for the relevance analysis of EEG segments in emotion assessment experiments. First, a windowing stage of the EEG data is performed, from which brain connectivity measures are extracted as BEA descriptors. The correlation and the time-series generalized measure of association (TGMA) are selected at this stage. Then, the connectivity data is used for galvanic skin response (GSR) and Blood Volume pressure (BVP) estimation employing the quantized kernel mean least squares (QKLMS) strategy. Finally, from the QKLMS algorithm, a set of relevant centroids in the estimation of physiological responses are used in the classification of the specific emotional state. The results obtained validate the proposed methodology and give clear evidence that a selection of segments from BEA improve further stages of classification for emotion assessment tasks.
    20 schema:editor N925b120d7825411fb4964d8f3bf61d41
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N1bc5014498d94178a9e2f24cecd479a7
    25 schema:name Emotion Assessment Using Adaptive Learning-Based Relevance Analysis
    26 schema:pagination 193-200
    27 schema:productId N1cb7ec940e2246b6b81c9867025aee18
    28 N63040c970a3b4590a69fae8839d1c6b5
    29 Ndf23f2ab43d64a54a2618f71995da577
    30 schema:publisher N319cb6b7732b48a59b54490ad72f6a5a
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412369
    32 https://doi.org/10.1007/978-3-319-93000-8_22
    33 schema:sdDatePublished 2019-04-16T05:01
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N5e5be0934d34438f94911781bc0e512c
    36 schema:url https://link.springer.com/10.1007%2F978-3-319-93000-8_22
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N1671222b62d443069037bf5cabde5206 rdf:first N262185fb37ab4928a34951f4b726b6ca
    41 rdf:rest rdf:nil
    42 N1bc5014498d94178a9e2f24cecd479a7 schema:isbn 978-3-319-92999-6
    43 978-3-319-93000-8
    44 schema:name Image Analysis and Recognition
    45 rdf:type schema:Book
    46 N1bf2b909e4ee4ebbabfd5d38b1253503 rdf:first sg:person.01261456124.28
    47 rdf:rest N9f8e4b8ad13347aca5b47884bce1d421
    48 N1cb7ec940e2246b6b81c9867025aee18 schema:name readcube_id
    49 schema:value d8cd83dcc87e769c72324a695b7aa249213d1450a709e6097de6003d83ce5e2f
    50 rdf:type schema:PropertyValue
    51 N262185fb37ab4928a34951f4b726b6ca schema:familyName ter Haar Romeny
    52 schema:givenName Bart
    53 rdf:type schema:Person
    54 N319cb6b7732b48a59b54490ad72f6a5a schema:location Cham
    55 schema:name Springer International Publishing
    56 rdf:type schema:Organisation
    57 N3ac8c18e533040a0b5c237406680867f rdf:first N76c6766f089749d58c0147a5cf1f20e9
    58 rdf:rest N1671222b62d443069037bf5cabde5206
    59 N5e5be0934d34438f94911781bc0e512c schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N63040c970a3b4590a69fae8839d1c6b5 schema:name doi
    62 schema:value 10.1007/978-3-319-93000-8_22
    63 rdf:type schema:PropertyValue
    64 N76c6766f089749d58c0147a5cf1f20e9 schema:familyName Karray
    65 schema:givenName Fakhri
    66 rdf:type schema:Person
    67 N7fc2a6d2cb2f4903b276d97d093c7ac1 rdf:first sg:person.010435251713.18
    68 rdf:rest N1bf2b909e4ee4ebbabfd5d38b1253503
    69 N925b120d7825411fb4964d8f3bf61d41 rdf:first Nb0b7a8dcf7d2454987e016afe53e4ec1
    70 rdf:rest N3ac8c18e533040a0b5c237406680867f
    71 N9f8e4b8ad13347aca5b47884bce1d421 rdf:first sg:person.012201216001.24
    72 rdf:rest rdf:nil
    73 Nb0b7a8dcf7d2454987e016afe53e4ec1 schema:familyName Campilho
    74 schema:givenName Aurélio
    75 rdf:type schema:Person
    76 Ndf23f2ab43d64a54a2618f71995da577 schema:name dimensions_id
    77 schema:value pub.1104412369
    78 rdf:type schema:PropertyValue
    79 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Medical and Health Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Neurosciences
    84 rdf:type schema:DefinedTerm
    85 sg:person.010435251713.18 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    86 schema:familyName Torres-Valencia
    87 schema:givenName C.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010435251713.18
    89 rdf:type schema:Person
    90 sg:person.012201216001.24 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    91 schema:familyName Orozco-Gutierrez
    92 schema:givenName A.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012201216001.24
    94 rdf:type schema:Person
    95 sg:person.01261456124.28 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
    96 schema:familyName Alvarez-Meza
    97 schema:givenName A.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261456124.28
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-319-59740-9_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086391548
    101 https://doi.org/10.1007/978-3-319-59740-9_35
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s11571-014-9325-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032495656
    104 https://doi.org/10.1007/s11571-014-9325-x
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s12193-016-0222-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015594740
    107 https://doi.org/10.1007/s12193-016-0222-y
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/9780470608593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661998
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/9781118622162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893131
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.bspc.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008939850
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.eswa.2014.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046111502
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.neucom.2015.09.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040366465
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1089/brain.2011.0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047424808
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/embc.2016.7590800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084497943
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/t-affc.2011.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446966
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/t-affc.2011.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446989
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.3389/fncom.2016.00055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038544549
    128 rdf:type schema:CreativeWork
    129 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
    130 schema:name Automatics Research Group, Universidad Tecnológica de Pereira, Pereira - Risaralda, Colombia
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...