Tuning CNN Input Layout for IDS with Genetic Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-06-08

AUTHORS

Roberto Blanco , Juan J. Cilla , Pedro Malagón , Ignacio Penas , José M. Moya

ABSTRACT

Intrusion Detection Systems (IDS) are implemented by service providers and network operators to monitor and detect attacks. Many machine learning algorithms, stand-alone or combined, have been proposed, including different types of Artificial Neural Networks (ANN). This work evaluates a Convolutional Neural Network (CNN), created for image classification, as an IDS that can be deployed in a router, which has not been evaluated previously. The layout of the features in the input matrix of the CNN is relevant. A Genetic Algorithm (GA) is used to find a high-quality solution by rearranging the layout of the input features, reducing the features if required. The GA improves the capacity of intrusion detection from 0.71 to 0.77 for normalized input featuress, similar to existing algorithms. For scenarios where data normalization is not possible, many input layouts are useless. The GA finds a solution with an intrusion detection capacity of 0.73. More... »

PAGES

197-209

Book

TITLE

Hybrid Artificial Intelligent Systems

ISBN

978-3-319-92638-4
978-3-319-92639-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-92639-1_17

DOI

http://dx.doi.org/10.1007/978-3-319-92639-1_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104468600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CCS-Center for Computational Simulation, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanco", 
        "givenName": "Roberto", 
        "id": "sg:person.010063411206.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063411206.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CCS-Center for Computational Simulation, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cilla", 
        "givenName": "Juan J.", 
        "id": "sg:person.010660771606.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660771606.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "LSI-Universidad Politecnica de Madrid, Madrid, Spain", 
            "CCS-Center for Computational Simulation, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malag\u00f3n", 
        "givenName": "Pedro", 
        "id": "sg:person.012400766577.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400766577.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CCS-Center for Computational Simulation, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penas", 
        "givenName": "Ignacio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "LSI-Universidad Politecnica de Madrid, Madrid, Spain", 
            "CCS-Center for Computational Simulation, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moya", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.07662217004.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1128817.1128834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006757546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19393555.2015.1125974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007650632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1656274.1656278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028526411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10065-010-0035-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030216055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20505-7_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037477474", 
          "https://doi.org/10.1007/978-3-642-20505-7_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20505-7_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037477474", 
          "https://doi.org/10.1007/978-3-642-20505-7_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jifs-169230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084430455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47364-2_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084902381", 
          "https://doi.org/10.1007/978-3-319-47364-2_49"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/platcon.2016.7456805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093440003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2016.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093468211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wincom.2016.7777224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093512738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/milcis.2015.7348942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094497395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdar.2003.1227801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094714779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/istel.2016.7881798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095196761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2010.5687239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095727151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/eai.3-12-2015.2262516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099431849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4108/eai.3-12-2015.2262516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099431849"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-08", 
    "datePublishedReg": "2018-06-08", 
    "description": "Intrusion Detection Systems (IDS) are implemented by service providers and network operators to monitor and detect attacks. Many machine learning algorithms, stand-alone or combined, have been proposed, including different types of Artificial Neural Networks (ANN). This work evaluates a Convolutional Neural Network (CNN), created for image classification, as an IDS that can be deployed in a router, which has not been evaluated previously. The layout of the features in the input matrix of the CNN is relevant. A Genetic Algorithm (GA) is used to find a high-quality solution by rearranging the layout of the input features, reducing the features if required. The GA improves the capacity of intrusion detection from 0.71 to 0.77 for normalized input featuress, similar to existing algorithms. For scenarios where data normalization is not possible, many input layouts are useless. The GA finds a solution with an intrusion detection capacity of 0.73.", 
    "editor": [
      {
        "familyName": "de Cos Juez", 
        "givenName": "Francisco Javier", 
        "type": "Person"
      }, 
      {
        "familyName": "Villar", 
        "givenName": "Jos\u00e9 Ram\u00f3n", 
        "type": "Person"
      }, 
      {
        "familyName": "de la Cal", 
        "givenName": "Enrique A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Herrero", 
        "givenName": "\u00c1lvaro", 
        "type": "Person"
      }, 
      {
        "familyName": "Quinti\u00e1n", 
        "givenName": "H\u00e9ctor", 
        "type": "Person"
      }, 
      {
        "familyName": "S\u00e1ez", 
        "givenName": "Jos\u00e9 Ant\u00f3nio", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Emilio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-92639-1_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-92638-4", 
        "978-3-319-92639-1"
      ], 
      "name": "Hybrid Artificial Intelligent Systems", 
      "type": "Book"
    }, 
    "name": "Tuning CNN Input Layout for IDS with Genetic Algorithms", 
    "pagination": "197-209", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-92639-1_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21d0ccd71f45c6eae1ad3a6059486893eec8618bf68da7d411a4adbb5069c337"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104468600"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-92639-1_17", 
      "https://app.dimensions.ai/details/publication/pub.1104468600"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100815_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-92639-1_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92639-1_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92639-1_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92639-1_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92639-1_17'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      23 PREDICATES      41 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-92639-1_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N36a9ca878ef548cd8c217b719f144ec1
4 schema:citation sg:pub.10.1007/978-3-319-47364-2_49
5 sg:pub.10.1007/978-3-642-20505-7_26
6 https://doi.org/10.1080/19393555.2015.1125974
7 https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2016.32
8 https://doi.org/10.1109/icdar.2003.1227801
9 https://doi.org/10.1109/isda.2010.5687239
10 https://doi.org/10.1109/istel.2016.7881798
11 https://doi.org/10.1109/milcis.2015.7348942
12 https://doi.org/10.1109/platcon.2016.7456805
13 https://doi.org/10.1109/wincom.2016.7777224
14 https://doi.org/10.1145/1128817.1128834
15 https://doi.org/10.1145/1656274.1656278
16 https://doi.org/10.2478/v10065-010-0035-7
17 https://doi.org/10.3233/jifs-169230
18 https://doi.org/10.4108/eai.3-12-2015.2262516
19 schema:datePublished 2018-06-08
20 schema:datePublishedReg 2018-06-08
21 schema:description Intrusion Detection Systems (IDS) are implemented by service providers and network operators to monitor and detect attacks. Many machine learning algorithms, stand-alone or combined, have been proposed, including different types of Artificial Neural Networks (ANN). This work evaluates a Convolutional Neural Network (CNN), created for image classification, as an IDS that can be deployed in a router, which has not been evaluated previously. The layout of the features in the input matrix of the CNN is relevant. A Genetic Algorithm (GA) is used to find a high-quality solution by rearranging the layout of the input features, reducing the features if required. The GA improves the capacity of intrusion detection from 0.71 to 0.77 for normalized input featuress, similar to existing algorithms. For scenarios where data normalization is not possible, many input layouts are useless. The GA finds a solution with an intrusion detection capacity of 0.73.
22 schema:editor N34452d5fe24d4a30a1330d1948f9a097
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N4f6518321e3e4bf1844edc6f7e327389
27 schema:name Tuning CNN Input Layout for IDS with Genetic Algorithms
28 schema:pagination 197-209
29 schema:productId Na20bd400c8c3423290047af53ce727a4
30 Nc65a7b5c6038483da8ef6b93c5c629e1
31 Ne75367cd8e3e4e119ab0e9ec8d36872e
32 schema:publisher N02ba7138daae4d5ab05731a58e56152f
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104468600
34 https://doi.org/10.1007/978-3-319-92639-1_17
35 schema:sdDatePublished 2019-04-16T05:02
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nc61a4b07ed214023a9441788096657da
38 schema:url https://link.springer.com/10.1007%2F978-3-319-92639-1_17
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N02ba7138daae4d5ab05731a58e56152f schema:location Cham
43 schema:name Springer International Publishing
44 rdf:type schema:Organisation
45 N07e8b6931805441698ab6590a1f320e2 schema:familyName Quintián
46 schema:givenName Héctor
47 rdf:type schema:Person
48 N14824c6e2ec845b1a412d804d970a819 schema:affiliation N7ff78ae754b248e49353843804726f98
49 schema:familyName Penas
50 schema:givenName Ignacio
51 rdf:type schema:Person
52 N15c76b7149274d4398b60486471f2cd5 rdf:first sg:person.07662217004.56
53 rdf:rest rdf:nil
54 N171e1c9ec3614294a039a1aba130f330 rdf:first Nd95704eebf2a4e7d936a74a9eec2da37
55 rdf:rest rdf:nil
56 N243aec7024e64847b2f1f0222e390a67 rdf:first N3c5ea6bf23cb40a69cf6fe196ef33d9a
57 rdf:rest N171e1c9ec3614294a039a1aba130f330
58 N34452d5fe24d4a30a1330d1948f9a097 rdf:first Nec6f06c30991468d877990249c761f08
59 rdf:rest N57ac549c0a0b4f1b876451bc4b24b616
60 N36a9ca878ef548cd8c217b719f144ec1 rdf:first sg:person.010063411206.84
61 rdf:rest Nc933c08a4158490aba6d02fb467147a9
62 N3c5ea6bf23cb40a69cf6fe196ef33d9a schema:familyName Sáez
63 schema:givenName José António
64 rdf:type schema:Person
65 N4f6518321e3e4bf1844edc6f7e327389 schema:isbn 978-3-319-92638-4
66 978-3-319-92639-1
67 schema:name Hybrid Artificial Intelligent Systems
68 rdf:type schema:Book
69 N57ac549c0a0b4f1b876451bc4b24b616 rdf:first N9085ddeee7184e0db03e54c157302aa6
70 rdf:rest N8c5c7f67903b41e093d592fa99a695ef
71 N5c760e2912f74534be52997c8d1b9d1f schema:name CCS-Center for Computational Simulation, Madrid, Spain
72 rdf:type schema:Organization
73 N6a63c856d141481d9323364ba5ee47a4 rdf:first Na11aa4475e1c4285962e207e16a44fde
74 rdf:rest Nebc0996b79e74a3bbdd4f4d346d23d49
75 N7ff78ae754b248e49353843804726f98 schema:name CCS-Center for Computational Simulation, Madrid, Spain
76 rdf:type schema:Organization
77 N8c5c7f67903b41e093d592fa99a695ef rdf:first Ne2942a67601e4a68b3202dfaf39602be
78 rdf:rest N6a63c856d141481d9323364ba5ee47a4
79 N9085ddeee7184e0db03e54c157302aa6 schema:familyName Villar
80 schema:givenName José Ramón
81 rdf:type schema:Person
82 Na11aa4475e1c4285962e207e16a44fde schema:familyName Herrero
83 schema:givenName Álvaro
84 rdf:type schema:Person
85 Na20bd400c8c3423290047af53ce727a4 schema:name readcube_id
86 schema:value 21d0ccd71f45c6eae1ad3a6059486893eec8618bf68da7d411a4adbb5069c337
87 rdf:type schema:PropertyValue
88 Nbc3b3065461348c88a89e4f6908c8dc0 rdf:first N14824c6e2ec845b1a412d804d970a819
89 rdf:rest N15c76b7149274d4398b60486471f2cd5
90 Nc61a4b07ed214023a9441788096657da schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nc65a7b5c6038483da8ef6b93c5c629e1 schema:name doi
93 schema:value 10.1007/978-3-319-92639-1_17
94 rdf:type schema:PropertyValue
95 Nc8fafe04233945f1925c8d468e123683 rdf:first sg:person.012400766577.71
96 rdf:rest Nbc3b3065461348c88a89e4f6908c8dc0
97 Nc933c08a4158490aba6d02fb467147a9 rdf:first sg:person.010660771606.18
98 rdf:rest Nc8fafe04233945f1925c8d468e123683
99 Nd95704eebf2a4e7d936a74a9eec2da37 schema:familyName Corchado
100 schema:givenName Emilio
101 rdf:type schema:Person
102 Ne2942a67601e4a68b3202dfaf39602be schema:familyName de la Cal
103 schema:givenName Enrique A.
104 rdf:type schema:Person
105 Ne75367cd8e3e4e119ab0e9ec8d36872e schema:name dimensions_id
106 schema:value pub.1104468600
107 rdf:type schema:PropertyValue
108 Nebc0996b79e74a3bbdd4f4d346d23d49 rdf:first N07e8b6931805441698ab6590a1f320e2
109 rdf:rest N243aec7024e64847b2f1f0222e390a67
110 Nec6f06c30991468d877990249c761f08 schema:familyName de Cos Juez
111 schema:givenName Francisco Javier
112 rdf:type schema:Person
113 Nef85508d24ab472aaa36cf03a24013d4 schema:name CCS-Center for Computational Simulation, Madrid, Spain
114 rdf:type schema:Organization
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 sg:person.010063411206.84 schema:affiliation Nef85508d24ab472aaa36cf03a24013d4
122 schema:familyName Blanco
123 schema:givenName Roberto
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063411206.84
125 rdf:type schema:Person
126 sg:person.010660771606.18 schema:affiliation N5c760e2912f74534be52997c8d1b9d1f
127 schema:familyName Cilla
128 schema:givenName Juan J.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010660771606.18
130 rdf:type schema:Person
131 sg:person.012400766577.71 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
132 schema:familyName Malagón
133 schema:givenName Pedro
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012400766577.71
135 rdf:type schema:Person
136 sg:person.07662217004.56 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
137 schema:familyName Moya
138 schema:givenName José M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662217004.56
140 rdf:type schema:Person
141 sg:pub.10.1007/978-3-319-47364-2_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084902381
142 https://doi.org/10.1007/978-3-319-47364-2_49
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-20505-7_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037477474
145 https://doi.org/10.1007/978-3-642-20505-7_26
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1080/19393555.2015.1125974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650632
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/dasc-picom-datacom-cyberscitec.2016.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093468211
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/icdar.2003.1227801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094714779
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/isda.2010.5687239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095727151
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/istel.2016.7881798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095196761
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/milcis.2015.7348942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094497395
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/platcon.2016.7456805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093440003
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/wincom.2016.7777224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093512738
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/1128817.1128834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006757546
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/1656274.1656278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028526411
166 rdf:type schema:CreativeWork
167 https://doi.org/10.2478/v10065-010-0035-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030216055
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3233/jifs-169230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084430455
170 rdf:type schema:CreativeWork
171 https://doi.org/10.4108/eai.3-12-2015.2262516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099431849
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
174 schema:name CCS-Center for Computational Simulation, Madrid, Spain
175 LSI-Universidad Politecnica de Madrid, Madrid, Spain
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...