Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Demet Özgür-Ünlüakın , Ayşe Karacaörenli

ABSTRACT

Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks. More... »

PAGES

101-110

Book

TITLE

Proceedings of the International Symposium for Production Research 2018

ISBN

978-3-319-92266-9
978-3-319-92267-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8

DOI

http://dx.doi.org/10.1007/978-3-319-92267-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106157929


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "I\u015f\u0131k University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6zg\u00fcr-\u00dcnl\u00fcak\u0131n", 
        "givenName": "Demet", 
        "id": "sg:person.013511517571.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511517571.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "I\u015f\u0131k University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaca\u00f6renli", 
        "givenName": "Ay\u015fe", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003037120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-015-0405-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129075", 
          "https://doi.org/10.1007/s00291-015-0405-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-015-0405-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129075", 
          "https://doi.org/10.1007/s00291-015-0405-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012318489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/18756891.2014.853933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026103052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00197-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027836976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.psep.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045113106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2006.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053306568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ieem.2009.5372973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094417177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks.", 
    "editor": [
      {
        "familyName": "Durakbasa", 
        "givenName": "Numan M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gencyilmaz", 
        "givenName": "M. G\u00fcnes", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-92267-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-92266-9", 
        "978-3-319-92267-6"
      ], 
      "name": "Proceedings of the International Symposium for Production Research 2018", 
      "type": "Book"
    }, 
    "name": "Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks", 
    "pagination": "101-110", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-92267-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b001a4240ca4a51b6635e23dafb03c924ddd430daf34d0d47be9bff8b8de61cd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106157929"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-92267-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1106157929"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000475.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-92267-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-92267-6_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nad92edd41c7a4f0c9547ed0643028540
4 schema:citation sg:pub.10.1007/s00291-015-0405-z
5 https://doi.org/10.1016/j.eswa.2010.07.050
6 https://doi.org/10.1016/j.psep.2012.06.004
7 https://doi.org/10.1016/j.ress.2006.12.004
8 https://doi.org/10.1016/j.ress.2014.08.002
9 https://doi.org/10.1016/s0377-2217(01)00197-7
10 https://doi.org/10.1080/18756891.2014.853933
11 https://doi.org/10.1109/ieem.2009.5372973
12 schema:datePublished 2019
13 schema:datePublishedReg 2019-01-01
14 schema:description Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks.
15 schema:editor N9cbbe57dfe7344bbb2351840f22d6895
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ndbcf46db050545339bed18554490d1b7
20 schema:name Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks
21 schema:pagination 101-110
22 schema:productId N1d762d2e458c4a88a3a59af45a7119db
23 N3d04cdfd9c2e4cc6b41c44ed71677beb
24 Nc70c590a014144d0b10846b89476ea1b
25 schema:publisher N5f3469cc27c54126b21e8bbd6a4e0ac3
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106157929
27 https://doi.org/10.1007/978-3-319-92267-6_8
28 schema:sdDatePublished 2019-04-15T10:58
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Na96cf4af8fd34001a77c0ca04dc0a51d
31 schema:url http://link.springer.com/10.1007/978-3-319-92267-6_8
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N037aee6d005c44f6b57f368d00b1d392 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
36 schema:familyName Karacaörenli
37 schema:givenName Ayşe
38 rdf:type schema:Person
39 N1d762d2e458c4a88a3a59af45a7119db schema:name readcube_id
40 schema:value b001a4240ca4a51b6635e23dafb03c924ddd430daf34d0d47be9bff8b8de61cd
41 rdf:type schema:PropertyValue
42 N3d04cdfd9c2e4cc6b41c44ed71677beb schema:name dimensions_id
43 schema:value pub.1106157929
44 rdf:type schema:PropertyValue
45 N5f3469cc27c54126b21e8bbd6a4e0ac3 schema:location Cham
46 schema:name Springer International Publishing
47 rdf:type schema:Organisation
48 N608ac6f8e0d749e7840acbe5d78c8988 rdf:first Ndbf24457e893410c801bfa087fb893e0
49 rdf:rest rdf:nil
50 N878bd32ccc3b4081aa359e7666c88f7e rdf:first N037aee6d005c44f6b57f368d00b1d392
51 rdf:rest rdf:nil
52 N9cbbe57dfe7344bbb2351840f22d6895 rdf:first Ne337ff4c3c5a45b885367195a737c802
53 rdf:rest N608ac6f8e0d749e7840acbe5d78c8988
54 Na96cf4af8fd34001a77c0ca04dc0a51d schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 Nad92edd41c7a4f0c9547ed0643028540 rdf:first sg:person.013511517571.88
57 rdf:rest N878bd32ccc3b4081aa359e7666c88f7e
58 Nc70c590a014144d0b10846b89476ea1b schema:name doi
59 schema:value 10.1007/978-3-319-92267-6_8
60 rdf:type schema:PropertyValue
61 Ndbcf46db050545339bed18554490d1b7 schema:isbn 978-3-319-92266-9
62 978-3-319-92267-6
63 schema:name Proceedings of the International Symposium for Production Research 2018
64 rdf:type schema:Book
65 Ndbf24457e893410c801bfa087fb893e0 schema:familyName Gencyilmaz
66 schema:givenName M. Günes
67 rdf:type schema:Person
68 Ne337ff4c3c5a45b885367195a737c802 schema:familyName Durakbasa
69 schema:givenName Numan M.
70 rdf:type schema:Person
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.013511517571.88 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
78 schema:familyName Özgür-Ünlüakın
79 schema:givenName Demet
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511517571.88
81 rdf:type schema:Person
82 sg:pub.10.1007/s00291-015-0405-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009129075
83 https://doi.org/10.1007/s00291-015-0405-z
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.eswa.2010.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003037120
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.psep.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045113106
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ress.2006.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053306568
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ress.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012318489
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0377-2217(01)00197-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027836976
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/18756891.2014.853933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026103052
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/ieem.2009.5372973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094417177
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
100 schema:name Işık University
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...