Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2019

AUTHORS

Demet Özgür-Ünlüakın , Ayşe Karacaörenli

ABSTRACT

Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks. More... »

PAGES

101-110

Book

TITLE

Proceedings of the International Symposium for Production Research 2018

ISBN

978-3-319-92266-9
978-3-319-92267-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8

DOI

http://dx.doi.org/10.1007/978-3-319-92267-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106157929


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "I\u015f\u0131k University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00d6zg\u00fcr-\u00dcnl\u00fcak\u0131n", 
        "givenName": "Demet", 
        "id": "sg:person.013511517571.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511517571.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "I\u015f\u0131k University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaca\u00f6renli", 
        "givenName": "Ay\u015fe", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003037120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-015-0405-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129075", 
          "https://doi.org/10.1007/s00291-015-0405-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-015-0405-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129075", 
          "https://doi.org/10.1007/s00291-015-0405-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2014.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012318489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/18756891.2014.853933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026103052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00197-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027836976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.psep.2012.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045113106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ress.2006.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053306568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ieem.2009.5372973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094417177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019", 
    "datePublishedReg": "2019-01-01", 
    "description": "Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks.", 
    "editor": [
      {
        "familyName": "Durakbasa", 
        "givenName": "Numan M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gencyilmaz", 
        "givenName": "M. G\u00fcnes", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-92267-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-92266-9", 
        "978-3-319-92267-6"
      ], 
      "name": "Proceedings of the International Symposium for Production Research 2018", 
      "type": "Book"
    }, 
    "name": "Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks", 
    "pagination": "101-110", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-92267-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b001a4240ca4a51b6635e23dafb03c924ddd430daf34d0d47be9bff8b8de61cd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106157929"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-92267-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1106157929"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000475.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-92267-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-92267-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-92267-6_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nffc8991097af43c6bcd648f6eca4edef
4 schema:citation sg:pub.10.1007/s00291-015-0405-z
5 https://doi.org/10.1016/j.eswa.2010.07.050
6 https://doi.org/10.1016/j.psep.2012.06.004
7 https://doi.org/10.1016/j.ress.2006.12.004
8 https://doi.org/10.1016/j.ress.2014.08.002
9 https://doi.org/10.1016/s0377-2217(01)00197-7
10 https://doi.org/10.1080/18756891.2014.853933
11 https://doi.org/10.1109/ieem.2009.5372973
12 schema:datePublished 2019
13 schema:datePublishedReg 2019-01-01
14 schema:description Recently effective planning and management of maintenance activities have gained great importance. Although proactive maintenance approach is preferred against reactive maintenance approach in some highly critical systems, it is inevitable to give up the latter one because of the probabilistic nature of faults. Hence, reactive maintenance is still widely applied. Therefore the aim of this study is to develop an effective reactive maintenance strategy for a dynamic system consisting of four components. Components are hidden and degrading over time. However it is possible to receive partial observations about the condition of the system. One can replace components at any time period. Our aim is to minimize the total number of replacements in a given planning horizon. We propose several approaches within the framework of reactive maintenance for this system and compare their performances by simulating these using Dynamic Bayesian Networks.
15 schema:editor Ne8001059547546aaa7ed4c00bdc1eaa5
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N1e9c6134e3ee43929e7b5bd4b756c4a3
20 schema:name Analysis of Reactive Maintenance Strategies on a Multi-component System Using Dynamic Bayesian Networks
21 schema:pagination 101-110
22 schema:productId N255d402791ef4abd9d963af901688c61
23 Nccde16cc10c24a8e9a95de1cf8c9ed2a
24 Neb7eb5a497204d3794e6a0513ab8d9f8
25 schema:publisher N295e4366dc6041c8a9d84e3b37be5a3b
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106157929
27 https://doi.org/10.1007/978-3-319-92267-6_8
28 schema:sdDatePublished 2019-04-15T10:58
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N17eb66ab8ba94fc5855b72f2dcc25d2e
31 schema:url http://link.springer.com/10.1007/978-3-319-92267-6_8
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N17eb66ab8ba94fc5855b72f2dcc25d2e schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N1e9c6134e3ee43929e7b5bd4b756c4a3 schema:isbn 978-3-319-92266-9
38 978-3-319-92267-6
39 schema:name Proceedings of the International Symposium for Production Research 2018
40 rdf:type schema:Book
41 N255d402791ef4abd9d963af901688c61 schema:name readcube_id
42 schema:value b001a4240ca4a51b6635e23dafb03c924ddd430daf34d0d47be9bff8b8de61cd
43 rdf:type schema:PropertyValue
44 N295e4366dc6041c8a9d84e3b37be5a3b schema:location Cham
45 schema:name Springer International Publishing
46 rdf:type schema:Organisation
47 N3927d37e7ea341859cd6e3cfe696dfeb schema:affiliation https://www.grid.ac/institutes/grid.58192.37
48 schema:familyName Karacaörenli
49 schema:givenName Ayşe
50 rdf:type schema:Person
51 N97608c3a461f44938601e27412779d83 schema:familyName Durakbasa
52 schema:givenName Numan M.
53 rdf:type schema:Person
54 Ncbdc68d38e9b4708a1d3b0c4cb0cee5b schema:familyName Gencyilmaz
55 schema:givenName M. Günes
56 rdf:type schema:Person
57 Nccde16cc10c24a8e9a95de1cf8c9ed2a schema:name dimensions_id
58 schema:value pub.1106157929
59 rdf:type schema:PropertyValue
60 Nd4b5c1179e8144b3a5bbf9c69bf3f995 rdf:first Ncbdc68d38e9b4708a1d3b0c4cb0cee5b
61 rdf:rest rdf:nil
62 Ne8001059547546aaa7ed4c00bdc1eaa5 rdf:first N97608c3a461f44938601e27412779d83
63 rdf:rest Nd4b5c1179e8144b3a5bbf9c69bf3f995
64 Neb7eb5a497204d3794e6a0513ab8d9f8 schema:name doi
65 schema:value 10.1007/978-3-319-92267-6_8
66 rdf:type schema:PropertyValue
67 Nfc569ac3da7147a3a41b353b8fd75cf8 rdf:first N3927d37e7ea341859cd6e3cfe696dfeb
68 rdf:rest rdf:nil
69 Nffc8991097af43c6bcd648f6eca4edef rdf:first sg:person.013511517571.88
70 rdf:rest Nfc569ac3da7147a3a41b353b8fd75cf8
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:person.013511517571.88 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
78 schema:familyName Özgür-Ünlüakın
79 schema:givenName Demet
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013511517571.88
81 rdf:type schema:Person
82 sg:pub.10.1007/s00291-015-0405-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009129075
83 https://doi.org/10.1007/s00291-015-0405-z
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.eswa.2010.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003037120
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.psep.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045113106
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.ress.2006.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053306568
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.ress.2014.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012318489
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0377-2217(01)00197-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027836976
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1080/18756891.2014.853933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026103052
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/ieem.2009.5372973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094417177
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
100 schema:name Işık University
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...