Stochastic Simulation of Four Linear Phenotypic Selection Indices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-09-27

AUTHORS

Fernando H. Toledo , José Crossa , Juan Burgueño

ABSTRACT

Stochastic simulation can contribute to a better understanding of the problem, and has already been successfully applied to evaluate other breeding scenarios. Despite all the theories developed in this book concerning different types of indices, including phenotypic data and/or data on molecular markers, no examples have been presented showing the long-term behavior of different indices. The objective of this chapter is to present some results and insights into the in silico (computer simulation) performance comparison of over 50 selection cycles of a recurrent and generic population breeding program with different selection indices, restricted and unrestricted. The selection indices included in this stochastic simulation were the linear phenotypic selection index (LPSI), the eigen selection index method (ESIM), the restrictive LPSI, and the restrictive ESIM. More... »

PAGES

231-241

Book

TITLE

Linear Selection Indices in Modern Plant Breeding

ISBN

978-3-319-91222-6
978-3-319-91223-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-91223-3_10

DOI

http://dx.doi.org/10.1007/978-3-319-91223-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107262347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toledo", 
        "givenName": "Fernando H.", 
        "id": "sg:person.011222620377.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222620377.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Crossa", 
        "givenName": "Jos\u00e9", 
        "id": "sg:person.01274600533.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Maize and Wheat Improvement Center", 
          "id": "https://www.grid.ac/institutes/grid.433436.5", 
          "name": [
            "Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burgue\u00f1o", 
        "givenName": "Juan", 
        "id": "sg:person.0733536233.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-6868-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004337548", 
          "https://doi.org/10.1007/978-1-4614-6868-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6868-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004337548", 
          "https://doi.org/10.1007/978-1-4614-6868-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02983270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047084266", 
          "https://doi.org/10.1007/bf02983270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-1809.1936.tb02143.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048781922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2527598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069973541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077357077", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-27", 
    "datePublishedReg": "2018-09-27", 
    "description": "Stochastic simulation can contribute to a better understanding of the problem, and has already been successfully applied to evaluate other breeding scenarios. Despite all the theories developed in this book concerning different types of indices, including phenotypic data and/or data on molecular markers, no examples have been presented showing the long-term behavior of different indices. The objective of this chapter is to present some results and insights into the in silico (computer simulation) performance comparison of over 50 selection cycles of a recurrent and generic population breeding program with different selection indices, restricted and unrestricted. The selection indices included in this stochastic simulation were the linear phenotypic selection index (LPSI), the eigen selection index method (ESIM), the restrictive LPSI, and the restrictive ESIM.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-91223-3_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-91222-6", 
        "978-3-319-91223-3"
      ], 
      "name": "Linear Selection Indices in Modern Plant Breeding", 
      "type": "Book"
    }, 
    "name": "Stochastic Simulation of Four Linear Phenotypic Selection Indices", 
    "pagination": "231-241", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-91223-3_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5eed487c5914c0401d06304a4e96d85613773ea9d0af08603db62f9412e0ded8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107262347"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-91223-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1107262347"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100815_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-91223-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91223-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91223-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91223-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91223-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      30 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-91223-3_10 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N7326449ec9fb4174bf12918e6213090e
4 schema:citation sg:pub.10.1007/978-1-4614-6868-4
5 sg:pub.10.1007/bf02983270
6 https://app.dimensions.ai/details/publication/pub.1077357077
7 https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
8 https://doi.org/10.2307/2527598
9 schema:datePublished 2018-09-27
10 schema:datePublishedReg 2018-09-27
11 schema:description Stochastic simulation can contribute to a better understanding of the problem, and has already been successfully applied to evaluate other breeding scenarios. Despite all the theories developed in this book concerning different types of indices, including phenotypic data and/or data on molecular markers, no examples have been presented showing the long-term behavior of different indices. The objective of this chapter is to present some results and insights into the in silico (computer simulation) performance comparison of over 50 selection cycles of a recurrent and generic population breeding program with different selection indices, restricted and unrestricted. The selection indices included in this stochastic simulation were the linear phenotypic selection index (LPSI), the eigen selection index method (ESIM), the restrictive LPSI, and the restrictive ESIM.
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nc5ce1c4a864d49e395ac1c1fd8289453
16 schema:name Stochastic Simulation of Four Linear Phenotypic Selection Indices
17 schema:pagination 231-241
18 schema:productId N3722760235c64b5da9821d72bd17f242
19 N40a2d72e25a14a298eba26e34db55f95
20 N4ac612fe0363450ea7b3191901affd01
21 schema:publisher N475df47255444a92a5e5c422527c4107
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107262347
23 https://doi.org/10.1007/978-3-319-91223-3_10
24 schema:sdDatePublished 2019-04-16T05:02
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Ne8170236d7514cc29afbab7a76d017c5
27 schema:url https://link.springer.com/10.1007%2F978-3-319-91223-3_10
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N3722760235c64b5da9821d72bd17f242 schema:name doi
32 schema:value 10.1007/978-3-319-91223-3_10
33 rdf:type schema:PropertyValue
34 N40a2d72e25a14a298eba26e34db55f95 schema:name dimensions_id
35 schema:value pub.1107262347
36 rdf:type schema:PropertyValue
37 N475df47255444a92a5e5c422527c4107 schema:location Cham
38 schema:name Springer International Publishing
39 rdf:type schema:Organisation
40 N4ac612fe0363450ea7b3191901affd01 schema:name readcube_id
41 schema:value 5eed487c5914c0401d06304a4e96d85613773ea9d0af08603db62f9412e0ded8
42 rdf:type schema:PropertyValue
43 N4d0a7612ba344e6f8f227767b34b3e2d rdf:first sg:person.01274600533.83
44 rdf:rest Na65f379363954719be2538593c4a5763
45 N7326449ec9fb4174bf12918e6213090e rdf:first sg:person.011222620377.25
46 rdf:rest N4d0a7612ba344e6f8f227767b34b3e2d
47 Na65f379363954719be2538593c4a5763 rdf:first sg:person.0733536233.17
48 rdf:rest rdf:nil
49 Nc5ce1c4a864d49e395ac1c1fd8289453 schema:isbn 978-3-319-91222-6
50 978-3-319-91223-3
51 schema:name Linear Selection Indices in Modern Plant Breeding
52 rdf:type schema:Book
53 Ne8170236d7514cc29afbab7a76d017c5 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
59 schema:name Statistics
60 rdf:type schema:DefinedTerm
61 sg:person.011222620377.25 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
62 schema:familyName Toledo
63 schema:givenName Fernando H.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011222620377.25
65 rdf:type schema:Person
66 sg:person.01274600533.83 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
67 schema:familyName Crossa
68 schema:givenName José
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274600533.83
70 rdf:type schema:Person
71 sg:person.0733536233.17 schema:affiliation https://www.grid.ac/institutes/grid.433436.5
72 schema:familyName Burgueño
73 schema:givenName Juan
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733536233.17
75 rdf:type schema:Person
76 sg:pub.10.1007/978-1-4614-6868-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004337548
77 https://doi.org/10.1007/978-1-4614-6868-4
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02983270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047084266
80 https://doi.org/10.1007/bf02983270
81 rdf:type schema:CreativeWork
82 https://app.dimensions.ai/details/publication/pub.1077357077 schema:CreativeWork
83 https://doi.org/10.1111/j.1469-1809.1936.tb02143.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048781922
84 rdf:type schema:CreativeWork
85 https://doi.org/10.2307/2527598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069973541
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.433436.5 schema:alternateName International Maize and Wheat Improvement Center
88 schema:name Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico, Mexico
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...