Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018

AUTHORS

Taras Radchenko , Ihor Sahalianov , Valentyn Tatarenko , Yuriy Prylutskyy , Paweł Szroeder , Mateusz Kempiński , Wojciech Kempiński

ABSTRACT

This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene–ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal–insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo–Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials. More... »

PAGES

25-41

Book

TITLE

Nanooptics, Nanophotonics, Nanostructures, and Their Applications

ISBN

978-3-319-91082-6
978-3-319-91083-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3

DOI

http://dx.doi.org/10.1007/978-3-319-91083-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105144413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Academy of Sciences of Ukraine", 
          "id": "https://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "National Academy of Sciences of Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radchenko", 
        "givenName": "Taras", 
        "id": "sg:person.013174766433.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taras Shevchenko National University of Kyiv", 
          "id": "https://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Taras Shevchenko National University of Kyiv"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahalianov", 
        "givenName": "Ihor", 
        "id": "sg:person.011321067256.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321067256.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Academy of Sciences of Ukraine", 
          "id": "https://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "National Academy of Sciences of Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatarenko", 
        "givenName": "Valentyn", 
        "id": "sg:person.010750316705.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taras Shevchenko National University of Kyiv", 
          "id": "https://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Taras Shevchenko National University of Kyiv"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prylutskyy", 
        "givenName": "Yuriy", 
        "id": "sg:person.0761452727.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kazimierz Wielki University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szroeder", 
        "givenName": "Pawe\u0142", 
        "id": "sg:person.015547633667.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Adam Mickiewicz University in Pozna\u0144", 
          "id": "https://www.grid.ac/institutes/grid.5633.3", 
          "name": [
            "Adam Mickiewicz University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempi\u0144ski", 
        "givenName": "Mateusz", 
        "id": "sg:person.01237566556.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237566556.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polish Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.413454.3", 
          "name": [
            "Polish Academy of Sciences"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempi\u0144ski", 
        "givenName": "Wojciech", 
        "id": "sg:person.014443563561.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443563561.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ssc.2014.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002004940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(12)70079-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007595530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn800459e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011067471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms12232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011150269", 
          "https://doi.org/10.1038/ncomms12232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1167130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012080142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014560479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.235409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014560479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.01.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015220540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015630238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.235430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015630238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2015.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016008847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.046801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.046801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201404309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021567945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physe.2010.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022191387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.045404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022914134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.045404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022914134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.241412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023914131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.241412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023914131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024620040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024620040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026379918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.245444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026416848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.245444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026416848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn102598m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028137222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.045401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029654650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.045401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029654650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029687820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.035418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029687820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.semsem.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029983682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2012.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030754558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032713417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.115448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033879726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.115448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033879726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034410953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.056802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034410953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.195448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.195448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034846381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nr07755a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037498426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4883866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037570386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2013.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037839020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solidstatesciences.2009.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041720359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045202852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.167401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045202852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2010.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045985183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738100101367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049110862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738100101367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049110862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/11/115002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049432923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/11/115002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049432923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049636906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01539a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055805656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn200580w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn8008323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056227002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1659428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057737469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2187416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057844455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058092133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/2012/t146/014006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058995758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.108.612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.14953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.14953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060617054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.064120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.064120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.235431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.235431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.075435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.075435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.205424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.205424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/ssp.150.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072154192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2017-80091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085994092", 
          "https://doi.org/10.1140/epjb/e2017-80091-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2017-80091-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085994092", 
          "https://doi.org/10.1140/epjb/e2017-80091-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4996914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091357168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139031080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698497"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene\u2013ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal\u2013insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo\u2013Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.", 
    "editor": [
      {
        "familyName": "Fesenko", 
        "givenName": "Olena", 
        "type": "Person"
      }, 
      {
        "familyName": "Yatsenko", 
        "givenName": "Leonid", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-91083-3_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-91082-6", 
        "978-3-319-91083-3"
      ], 
      "name": "Nanooptics, Nanophotonics, Nanostructures, and Their Applications", 
      "type": "Book"
    }, 
    "name": "Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene", 
    "pagination": "25-41", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-91083-3_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b20065972538351637d28f32d0c72ba9d16df4e536d8cf68962310c8a3415bc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105144413"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-91083-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1105144413"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-91083-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      23 PREDICATES      81 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-91083-3_3 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N6c297cf592ee4373ae930bd933806b67
4 schema:citation sg:pub.10.1038/ncomms12232
5 sg:pub.10.1140/epjb/e2017-80091-x
6 https://doi.org/10.1002/chem.201404309
7 https://doi.org/10.1016/bs.semsem.2016.04.002
8 https://doi.org/10.1016/j.carbon.2011.11.010
9 https://doi.org/10.1016/j.carbon.2013.01.087
10 https://doi.org/10.1016/j.carbon.2016.01.067
11 https://doi.org/10.1016/j.physe.2010.03.024
12 https://doi.org/10.1016/j.physleta.2014.05.022
13 https://doi.org/10.1016/j.physrep.2015.12.006
14 https://doi.org/10.1016/j.solidstatesciences.2009.05.027
15 https://doi.org/10.1016/j.ssc.2010.10.036
16 https://doi.org/10.1016/j.ssc.2012.04.030
17 https://doi.org/10.1016/j.ssc.2013.08.029
18 https://doi.org/10.1016/j.ssc.2014.07.012
19 https://doi.org/10.1016/s1369-7021(12)70079-2
20 https://doi.org/10.1017/cbo9781139031080
21 https://doi.org/10.1021/ja01539a017
22 https://doi.org/10.1021/nn102598m
23 https://doi.org/10.1021/nn200580w
24 https://doi.org/10.1021/nn800459e
25 https://doi.org/10.1021/nn8008323
26 https://doi.org/10.1039/c5nr07755a
27 https://doi.org/10.1063/1.1659428
28 https://doi.org/10.1063/1.2187416
29 https://doi.org/10.1063/1.4883866
30 https://doi.org/10.1063/1.4894082
31 https://doi.org/10.1063/1.4996914
32 https://doi.org/10.1080/00018738100101367
33 https://doi.org/10.1088/0031-8949/2012/t146/014006
34 https://doi.org/10.1088/1367-2630/11/11/115002
35 https://doi.org/10.1103/physrev.108.612
36 https://doi.org/10.1103/physrev.109.272
37 https://doi.org/10.1103/physrevb.48.14953
38 https://doi.org/10.1103/physrevb.73.125414
39 https://doi.org/10.1103/physrevb.75.045404
40 https://doi.org/10.1103/physrevb.76.064120
41 https://doi.org/10.1103/physrevb.76.235431
42 https://doi.org/10.1103/physrevb.77.235430
43 https://doi.org/10.1103/physrevb.78.075435
44 https://doi.org/10.1103/physrevb.80.045401
45 https://doi.org/10.1103/physrevb.80.167401
46 https://doi.org/10.1103/physrevb.81.205424
47 https://doi.org/10.1103/physrevb.81.241412
48 https://doi.org/10.1103/physrevb.82.115448
49 https://doi.org/10.1103/physrevb.82.235409
50 https://doi.org/10.1103/physrevb.83.195436
51 https://doi.org/10.1103/physrevb.84.245444
52 https://doi.org/10.1103/physrevb.86.035418
53 https://doi.org/10.1103/physrevb.87.195448
54 https://doi.org/10.1103/physrevlett.103.046801
55 https://doi.org/10.1103/physrevlett.105.056802
56 https://doi.org/10.1126/science.1167130
57 https://doi.org/10.4028/www.scientific.net/ssp.150.43
58 schema:datePublished 2018
59 schema:datePublishedReg 2018-01-01
60 schema:description This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene–ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal–insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo–Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.
61 schema:editor Nd1c7be47fafb4bddadfd39e477ebcbb1
62 schema:genre chapter
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf N0335e3e425b64cdd9e3abb03d22c8683
66 schema:name Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene
67 schema:pagination 25-41
68 schema:productId N4e0326a8a5834042b5780499e7a79311
69 N50142d73ba344ed09d4bc8233fa99c95
70 Nc86811b30af642ca87cb68e221585332
71 schema:publisher Na1e0ec71f6844ae395c518e8246dd296
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105144413
73 https://doi.org/10.1007/978-3-319-91083-3_3
74 schema:sdDatePublished 2019-04-15T19:49
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N985dedbfc3924240a77419cb17bc285a
77 schema:url http://link.springer.com/10.1007/978-3-319-91083-3_3
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0335e3e425b64cdd9e3abb03d22c8683 schema:isbn 978-3-319-91082-6
82 978-3-319-91083-3
83 schema:name Nanooptics, Nanophotonics, Nanostructures, and Their Applications
84 rdf:type schema:Book
85 N4e0326a8a5834042b5780499e7a79311 schema:name doi
86 schema:value 10.1007/978-3-319-91083-3_3
87 rdf:type schema:PropertyValue
88 N50142d73ba344ed09d4bc8233fa99c95 schema:name readcube_id
89 schema:value 6b20065972538351637d28f32d0c72ba9d16df4e536d8cf68962310c8a3415bc
90 rdf:type schema:PropertyValue
91 N5a2194446e0d4f30aed6afa4f97b2636 rdf:first sg:person.015547633667.14
92 rdf:rest N9748c441f0df400789e2bc04e378c06b
93 N6c297cf592ee4373ae930bd933806b67 rdf:first sg:person.013174766433.06
94 rdf:rest Nb924dba804bf4debb5f62b2ec175a990
95 N797ed6aa77ed4d3ebc6205476edf2af2 rdf:first sg:person.0761452727.99
96 rdf:rest N5a2194446e0d4f30aed6afa4f97b2636
97 N8274499bd3504a64afafb56fd256550b schema:familyName Fesenko
98 schema:givenName Olena
99 rdf:type schema:Person
100 N8b6be0a9527e4725ba11a53c50cfeee5 schema:name Kazimierz Wielki University
101 rdf:type schema:Organization
102 N9748c441f0df400789e2bc04e378c06b rdf:first sg:person.01237566556.38
103 rdf:rest Nea3073f5765d44c68085e880f1af7496
104 N985dedbfc3924240a77419cb17bc285a schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N9fe53ceba0f54e9b8450eb9b3cee750d rdf:first sg:person.010750316705.75
107 rdf:rest N797ed6aa77ed4d3ebc6205476edf2af2
108 Na1e0ec71f6844ae395c518e8246dd296 schema:location Cham
109 schema:name Springer International Publishing
110 rdf:type schema:Organisation
111 Nb06d09cb186341cb895b67eb0e23a804 rdf:first Ncfc3a58a1b004780a44fdb34aa7e5c30
112 rdf:rest rdf:nil
113 Nb924dba804bf4debb5f62b2ec175a990 rdf:first sg:person.011321067256.46
114 rdf:rest N9fe53ceba0f54e9b8450eb9b3cee750d
115 Nc86811b30af642ca87cb68e221585332 schema:name dimensions_id
116 schema:value pub.1105144413
117 rdf:type schema:PropertyValue
118 Ncfc3a58a1b004780a44fdb34aa7e5c30 schema:familyName Yatsenko
119 schema:givenName Leonid
120 rdf:type schema:Person
121 Nd1c7be47fafb4bddadfd39e477ebcbb1 rdf:first N8274499bd3504a64afafb56fd256550b
122 rdf:rest Nb06d09cb186341cb895b67eb0e23a804
123 Nea3073f5765d44c68085e880f1af7496 rdf:first sg:person.014443563561.89
124 rdf:rest rdf:nil
125 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
126 schema:name Chemical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
129 schema:name Inorganic Chemistry
130 rdf:type schema:DefinedTerm
131 sg:person.010750316705.75 schema:affiliation https://www.grid.ac/institutes/grid.418751.e
132 schema:familyName Tatarenko
133 schema:givenName Valentyn
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75
135 rdf:type schema:Person
136 sg:person.011321067256.46 schema:affiliation https://www.grid.ac/institutes/grid.34555.32
137 schema:familyName Sahalianov
138 schema:givenName Ihor
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321067256.46
140 rdf:type schema:Person
141 sg:person.01237566556.38 schema:affiliation https://www.grid.ac/institutes/grid.5633.3
142 schema:familyName Kempiński
143 schema:givenName Mateusz
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237566556.38
145 rdf:type schema:Person
146 sg:person.013174766433.06 schema:affiliation https://www.grid.ac/institutes/grid.418751.e
147 schema:familyName Radchenko
148 schema:givenName Taras
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06
150 rdf:type schema:Person
151 sg:person.014443563561.89 schema:affiliation https://www.grid.ac/institutes/grid.413454.3
152 schema:familyName Kempiński
153 schema:givenName Wojciech
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443563561.89
155 rdf:type schema:Person
156 sg:person.015547633667.14 schema:affiliation N8b6be0a9527e4725ba11a53c50cfeee5
157 schema:familyName Szroeder
158 schema:givenName Paweł
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14
160 rdf:type schema:Person
161 sg:person.0761452727.99 schema:affiliation https://www.grid.ac/institutes/grid.34555.32
162 schema:familyName Prylutskyy
163 schema:givenName Yuriy
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99
165 rdf:type schema:Person
166 sg:pub.10.1038/ncomms12232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011150269
167 https://doi.org/10.1038/ncomms12232
168 rdf:type schema:CreativeWork
169 sg:pub.10.1140/epjb/e2017-80091-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085994092
170 https://doi.org/10.1140/epjb/e2017-80091-x
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/chem.201404309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021567945
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/bs.semsem.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029983682
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.carbon.2011.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026379918
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.carbon.2013.01.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015220540
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.carbon.2016.01.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032713417
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.physe.2010.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022191387
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.physleta.2014.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636906
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.physrep.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016008847
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.solidstatesciences.2009.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041720359
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.ssc.2010.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045985183
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.ssc.2012.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030754558
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.ssc.2013.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037839020
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.ssc.2014.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002004940
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s1369-7021(12)70079-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007595530
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1017/cbo9781139031080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698497
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/nn102598m schema:sameAs https://app.dimensions.ai/details/publication/pub.1028137222
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/nn200580w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223340
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/nn800459e schema:sameAs https://app.dimensions.ai/details/publication/pub.1011067471
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/nn8008323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056227002
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1039/c5nr07755a schema:sameAs https://app.dimensions.ai/details/publication/pub.1037498426
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1063/1.1659428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057737469
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.2187416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057844455
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.4883866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037570386
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1063/1.4894082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058092133
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1063/1.4996914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091357168
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1080/00018738100101367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049110862
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1088/0031-8949/2012/t146/014006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058995758
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1088/1367-2630/11/11/115002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049432923
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrev.108.612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419708
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrev.109.272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420046
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevb.48.14953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060567687
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevb.73.125414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060617054
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevb.75.045404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022914134
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrevb.76.064120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060621971
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.76.235431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623303
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevb.77.235430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015630238
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.78.075435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625892
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.80.045401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029654650
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.80.167401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045202852
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevb.81.205424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632723
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevb.81.241412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023914131
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevb.82.115448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033879726
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.82.235409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014560479
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.83.195436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024620040
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevb.84.245444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026416848
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevb.86.035418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029687820
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevb.87.195448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034846381
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevlett.103.046801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020923424
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevlett.105.056802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034410953
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1126/science.1167130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012080142
273 rdf:type schema:CreativeWork
274 https://doi.org/10.4028/www.scientific.net/ssp.150.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072154192
275 rdf:type schema:CreativeWork
276 https://www.grid.ac/institutes/grid.34555.32 schema:alternateName Taras Shevchenko National University of Kyiv
277 schema:name Taras Shevchenko National University of Kyiv
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.413454.3 schema:alternateName Polish Academy of Sciences
280 schema:name Polish Academy of Sciences
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.418751.e schema:alternateName National Academy of Sciences of Ukraine
283 schema:name National Academy of Sciences of Ukraine
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.5633.3 schema:alternateName Adam Mickiewicz University in Poznań
286 schema:name Adam Mickiewicz University
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...