Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-06-27

AUTHORS

Taras Radchenko , Ihor Sahalianov , Valentyn Tatarenko , Yuriy Prylutskyy , Paweł Szroeder , Mateusz Kempiński , Wojciech Kempiński

ABSTRACT

This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene–ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal–insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo–Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials. More... »

PAGES

25-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3

DOI

http://dx.doi.org/10.1007/978-3-319-91083-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105144413


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.435300.1", 
          "name": [
            "G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radchenko", 
        "givenName": "Taras", 
        "id": "sg:person.013174766433.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taras Shevchenko National University of Kyiv, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Taras Shevchenko National University of Kyiv, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahalianov", 
        "givenName": "Ihor", 
        "id": "sg:person.011321067256.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321067256.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.435300.1", 
          "name": [
            "G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatarenko", 
        "givenName": "Valentyn", 
        "id": "sg:person.010750316705.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Taras Shevchenko National University of Kyiv, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Taras Shevchenko National University of Kyiv, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prylutskyy", 
        "givenName": "Yuriy", 
        "id": "sg:person.0761452727.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412085.a", 
          "name": [
            "Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szroeder", 
        "givenName": "Pawe\u0142", 
        "id": "sg:person.015547633667.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NanoBioMedical Centre, Adam Mickiewicz University, Pozna\u0144, Poland", 
          "id": "http://www.grid.ac/institutes/grid.5633.3", 
          "name": [
            "Faculty of Physics, Adam Mickiewicz University, Pozna\u0144, Poland", 
            "NanoBioMedical Centre, Adam Mickiewicz University, Pozna\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempi\u0144ski", 
        "givenName": "Mateusz", 
        "id": "sg:person.01237566556.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237566556.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Physics, Polish Academy of Sciences, Pozna\u0144, Poland", 
          "id": "http://www.grid.ac/institutes/grid.425041.6", 
          "name": [
            "Institute of Molecular Physics, Polish Academy of Sciences, Pozna\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempi\u0144ski", 
        "givenName": "Wojciech", 
        "id": "sg:person.014443563561.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443563561.89"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-06-27", 
    "datePublishedReg": "2018-06-27", 
    "description": "This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene\u2013ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal\u2013insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo\u2013Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.", 
    "editor": [
      {
        "familyName": "Fesenko", 
        "givenName": "Olena", 
        "type": "Person"
      }, 
      {
        "familyName": "Yatsenko", 
        "givenName": "Leonid", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-91083-3_3", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-91082-6", 
        "978-3-319-91083-3"
      ], 
      "name": "Nanooptics, Nanophotonics, Nanostructures, and Their Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "possible metal-insulator transition", 
      "quantum mechanical formalism", 
      "band gap opening", 
      "uniaxial strain", 
      "granular metal model", 
      "metal-insulator transition", 
      "electrical transport phenomena", 
      "hydrogen-containing molecules", 
      "band gap behavior", 
      "electron states", 
      "localized charge carriers", 
      "electron paramagnetic resonance (EPR) technique", 
      "paramagnetic resonance technique", 
      "electronic states", 
      "electron density", 
      "localization effects", 
      "electronic properties", 
      "impurity atoms", 
      "binding model", 
      "graphene edges", 
      "transport properties", 
      "zigzag deformation", 
      "charge carriers", 
      "chemical state", 
      "resonance techniques", 
      "substitutional atoms", 
      "molecule systems", 
      "potential barrier", 
      "atoms", 
      "graphene", 
      "pumping effect", 
      "broad temperature range", 
      "defect ordering", 
      "transport phenomena", 
      "graphene-based materials", 
      "electrotransport properties", 
      "dozens of times", 
      "presence of point", 
      "temperature range", 
      "graphene oxide", 
      "random distribution", 
      "state", 
      "properties", 
      "vacancies", 
      "formalism", 
      "configuration", 
      "simultaneous action", 
      "metal model", 
      "transport", 
      "transition", 
      "adsorbates", 
      "ordering", 
      "molecules", 
      "different configurations", 
      "applied technique", 
      "density", 
      "discussion of results", 
      "distortion", 
      "edge", 
      "technique", 
      "imperfections", 
      "oxide", 
      "carriers", 
      "conductivity", 
      "phenomenon", 
      "range", 
      "oxygen", 
      "distribution", 
      "materials", 
      "formation", 
      "functional groups", 
      "localization", 
      "effect", 
      "model", 
      "barriers", 
      "results", 
      "crucial role", 
      "dozens", 
      "center", 
      "system", 
      "cases", 
      "behavior", 
      "carbon", 
      "time", 
      "presence", 
      "influence", 
      "relation", 
      "good basis", 
      "adsorption", 
      "basis", 
      "turn", 
      "point", 
      "opening", 
      "deformation", 
      "framework", 
      "strains", 
      "types", 
      "discussion", 
      "amount", 
      "counteracts", 
      "chapter", 
      "sites", 
      "content", 
      "active carbon", 
      "role", 
      "action", 
      "observations", 
      "group"
    ], 
    "name": "Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene", 
    "pagination": "25-41", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105144413"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-91083-3_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-91083-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1105144413"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_45.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-91083-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91083-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      22 PREDICATES      131 URIs      124 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-91083-3_3 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 schema:author N69c4b84f8ed144babced43268fb78fa2
4 schema:datePublished 2018-06-27
5 schema:datePublishedReg 2018-06-27
6 schema:description This chapter generalizes results on the influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms, either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe the electronic properties of graphene–ad-molecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. The applied technique allowed for observation of possible metal–insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo–Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be non-monotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres (atoms or molecules) responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.
7 schema:editor N2f3ca90ce1ee4a7283fb9424c12e8468
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N5643130940b24e498758eb93958f1189
11 schema:keywords action
12 active carbon
13 adsorbates
14 adsorption
15 amount
16 applied technique
17 atoms
18 band gap behavior
19 band gap opening
20 barriers
21 basis
22 behavior
23 binding model
24 broad temperature range
25 carbon
26 carriers
27 cases
28 center
29 chapter
30 charge carriers
31 chemical state
32 conductivity
33 configuration
34 content
35 counteracts
36 crucial role
37 defect ordering
38 deformation
39 density
40 different configurations
41 discussion
42 discussion of results
43 distortion
44 distribution
45 dozens
46 dozens of times
47 edge
48 effect
49 electrical transport phenomena
50 electron density
51 electron paramagnetic resonance (EPR) technique
52 electron states
53 electronic properties
54 electronic states
55 electrotransport properties
56 formalism
57 formation
58 framework
59 functional groups
60 good basis
61 granular metal model
62 graphene
63 graphene edges
64 graphene oxide
65 graphene-based materials
66 group
67 hydrogen-containing molecules
68 imperfections
69 impurity atoms
70 influence
71 localization
72 localization effects
73 localized charge carriers
74 materials
75 metal model
76 metal-insulator transition
77 model
78 molecule systems
79 molecules
80 observations
81 opening
82 ordering
83 oxide
84 oxygen
85 paramagnetic resonance technique
86 phenomenon
87 point
88 possible metal-insulator transition
89 potential barrier
90 presence
91 presence of point
92 properties
93 pumping effect
94 quantum mechanical formalism
95 random distribution
96 range
97 relation
98 resonance techniques
99 results
100 role
101 simultaneous action
102 sites
103 state
104 strains
105 substitutional atoms
106 system
107 technique
108 temperature range
109 time
110 transition
111 transport
112 transport phenomena
113 transport properties
114 turn
115 types
116 uniaxial strain
117 vacancies
118 zigzag deformation
119 schema:name Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene
120 schema:pagination 25-41
121 schema:productId N73e42a06692845cc9fce0786f17e300a
122 Nfdf5797307934c069fbed89c4c99fc91
123 schema:publisher N7931b2c3cbb94cd9b1429cb73081fee9
124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105144413
125 https://doi.org/10.1007/978-3-319-91083-3_3
126 schema:sdDatePublished 2022-10-01T06:59
127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
128 schema:sdPublisher N43ddd23defbe4a8e9425f574ddd6851d
129 schema:url https://doi.org/10.1007/978-3-319-91083-3_3
130 sgo:license sg:explorer/license/
131 sgo:sdDataset chapters
132 rdf:type schema:Chapter
133 N14682f971fec4b948be8860acae309ef schema:familyName Fesenko
134 schema:givenName Olena
135 rdf:type schema:Person
136 N2f3ca90ce1ee4a7283fb9424c12e8468 rdf:first N14682f971fec4b948be8860acae309ef
137 rdf:rest Nf94232f7680245bea25b8abe908f11a7
138 N39a79720a8dc4e5aafe86030245882c9 rdf:first sg:person.015547633667.14
139 rdf:rest N39d8954d11b84a98ae05010bd1fb66ac
140 N39d8954d11b84a98ae05010bd1fb66ac rdf:first sg:person.01237566556.38
141 rdf:rest N5917fa63bcec44569cafc96b941a7c17
142 N43ddd23defbe4a8e9425f574ddd6851d schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N5643130940b24e498758eb93958f1189 schema:isbn 978-3-319-91082-6
145 978-3-319-91083-3
146 schema:name Nanooptics, Nanophotonics, Nanostructures, and Their Applications
147 rdf:type schema:Book
148 N5917fa63bcec44569cafc96b941a7c17 rdf:first sg:person.014443563561.89
149 rdf:rest rdf:nil
150 N69c4b84f8ed144babced43268fb78fa2 rdf:first sg:person.013174766433.06
151 rdf:rest Nfddc8d3caf3a412fb01ea1e91124b48c
152 N73e42a06692845cc9fce0786f17e300a schema:name doi
153 schema:value 10.1007/978-3-319-91083-3_3
154 rdf:type schema:PropertyValue
155 N7931b2c3cbb94cd9b1429cb73081fee9 schema:name Springer Nature
156 rdf:type schema:Organisation
157 N972c252f0d6d4a84803122f2aafcbd21 schema:familyName Yatsenko
158 schema:givenName Leonid
159 rdf:type schema:Person
160 Nc72114afadeb4265b7f08fcf320ebbe1 rdf:first sg:person.0761452727.99
161 rdf:rest N39a79720a8dc4e5aafe86030245882c9
162 Nd9a873d80e234a3d8197b0f9069cec05 rdf:first sg:person.010750316705.75
163 rdf:rest Nc72114afadeb4265b7f08fcf320ebbe1
164 Nf94232f7680245bea25b8abe908f11a7 rdf:first N972c252f0d6d4a84803122f2aafcbd21
165 rdf:rest rdf:nil
166 Nfddc8d3caf3a412fb01ea1e91124b48c rdf:first sg:person.011321067256.46
167 rdf:rest Nd9a873d80e234a3d8197b0f9069cec05
168 Nfdf5797307934c069fbed89c4c99fc91 schema:name dimensions_id
169 schema:value pub.1105144413
170 rdf:type schema:PropertyValue
171 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
172 schema:name Chemical Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
175 schema:name Inorganic Chemistry
176 rdf:type schema:DefinedTerm
177 sg:person.010750316705.75 schema:affiliation grid-institutes:grid.435300.1
178 schema:familyName Tatarenko
179 schema:givenName Valentyn
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75
181 rdf:type schema:Person
182 sg:person.011321067256.46 schema:affiliation grid-institutes:grid.34555.32
183 schema:familyName Sahalianov
184 schema:givenName Ihor
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011321067256.46
186 rdf:type schema:Person
187 sg:person.01237566556.38 schema:affiliation grid-institutes:grid.5633.3
188 schema:familyName Kempiński
189 schema:givenName Mateusz
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01237566556.38
191 rdf:type schema:Person
192 sg:person.013174766433.06 schema:affiliation grid-institutes:grid.435300.1
193 schema:familyName Radchenko
194 schema:givenName Taras
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06
196 rdf:type schema:Person
197 sg:person.014443563561.89 schema:affiliation grid-institutes:grid.425041.6
198 schema:familyName Kempiński
199 schema:givenName Wojciech
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443563561.89
201 rdf:type schema:Person
202 sg:person.015547633667.14 schema:affiliation grid-institutes:grid.412085.a
203 schema:familyName Szroeder
204 schema:givenName Paweł
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14
206 rdf:type schema:Person
207 sg:person.0761452727.99 schema:affiliation grid-institutes:grid.34555.32
208 schema:familyName Prylutskyy
209 schema:givenName Yuriy
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99
211 rdf:type schema:Person
212 grid-institutes:grid.34555.32 schema:alternateName Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
213 schema:name Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
214 rdf:type schema:Organization
215 grid-institutes:grid.412085.a schema:alternateName Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland
216 schema:name Institute of Physics, Kazimierz Wielki University, Bydgoszcz, Poland
217 rdf:type schema:Organization
218 grid-institutes:grid.425041.6 schema:alternateName Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
219 schema:name Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
220 rdf:type schema:Organization
221 grid-institutes:grid.435300.1 schema:alternateName G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
222 schema:name G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
223 rdf:type schema:Organization
224 grid-institutes:grid.5633.3 schema:alternateName NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
225 schema:name Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
226 NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...