Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-05-12

AUTHORS

V. Maksymovych , E. Nyemkova , M. Shevchuk

ABSTRACT

Generators of pseudorandom sequences are widely used in practice. Generators of pseudorandom bit sequences occupy a special place among them; they are necessary for solving a number of important tasks, for example, for strong cryptography. The impossibility of predicting the following values of pseudorandom sequences is one of the basic requirements for such generators. Otherwise, these generators cannot be used to protect of information. It is generally accepted that if the stochastic sequence is stationary, then the prediction of such sequence is impossible. Our research shows that there are invariants for specific pseudorandom sequences that can be used to this prediction.The article is devoted to the method of prediction of pseudorandom bit sequences. The values of the autocorrelation coefficients for some lags are used. Good results are obtained for software-implemented stationary stochastic sequences. More... »

PAGES

437-446

Book

TITLE

Advances in Computer Science for Engineering and Education

ISBN

978-3-319-91007-9
978-3-319-91008-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-91008-6_44

DOI

http://dx.doi.org/10.1007/978-3-319-91008-6_44

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103943198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.10067.30", 
          "name": [
            "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksymovych", 
        "givenName": "V.", 
        "id": "sg:person.013346070406.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346070406.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.10067.30", 
          "name": [
            "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nyemkova", 
        "givenName": "E.", 
        "id": "sg:person.07447446464.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447446464.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.10067.30", 
          "name": [
            "Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shevchuk", 
        "givenName": "M.", 
        "id": "sg:person.012435624030.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012435624030.73"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-05-12", 
    "datePublishedReg": "2018-05-12", 
    "description": "Abstract\nGenerators of pseudorandom sequences are widely used in practice. Generators of pseudorandom bit sequences occupy a special place among them; they are necessary for solving a number of important tasks, for example, for strong cryptography. The impossibility of predicting the following values of pseudorandom sequences is one of the basic requirements for such generators. Otherwise, these generators cannot be used to protect of information. It is generally accepted that if the stochastic sequence is stationary, then the prediction of such sequence is impossible. Our research shows that there are invariants for specific pseudorandom sequences that can be used to this prediction.The article is devoted to the method of prediction of pseudorandom bit sequences. The values of the autocorrelation coefficients for some lags are used. Good results are obtained for software-implemented stationary stochastic sequences.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Zhengbing", 
        "type": "Person"
      }, 
      {
        "familyName": "Petoukhov", 
        "givenName": "Sergey", 
        "type": "Person"
      }, 
      {
        "familyName": "Dychka", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "He", 
        "givenName": "Matthew", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-91008-6_44", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-91007-9", 
        "978-3-319-91008-6"
      ], 
      "name": "Advances in Computer Science for Engineering and Education", 
      "type": "Book"
    }, 
    "keywords": [
      "stochastic sequences", 
      "stationary stochastic sequences", 
      "pseudorandom sequences", 
      "cryptographic resistance", 
      "pseudorandom bit sequence generator", 
      "statistic properties", 
      "bit sequence", 
      "sequence generator", 
      "autocorrelation coefficients", 
      "such generators", 
      "such sequences", 
      "generator", 
      "invariants", 
      "strong cryptography", 
      "important task", 
      "cryptography", 
      "prediction", 
      "method of prediction", 
      "good results", 
      "pseudorandom bit sequence", 
      "basic requirements", 
      "coefficient", 
      "sequence", 
      "impossibility", 
      "special place", 
      "number", 
      "values", 
      "properties", 
      "lag", 
      "requirements", 
      "results", 
      "task", 
      "information", 
      "article", 
      "research", 
      "practice", 
      "place", 
      "example", 
      "method", 
      "resistance", 
      "specific pseudorandom sequences", 
      "software-implemented stationary stochastic sequences", 
      "Bit Sequence Generators"
    ], 
    "name": "Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators", 
    "pagination": "437-446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103943198"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-91008-6_44"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-91008-6_44", 
      "https://app.dimensions.ai/details/publication/pub.1103943198"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_408.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-91008-6_44"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91008-6_44'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91008-6_44'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91008-6_44'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-91008-6_44'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-91008-6_44 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N079d99e26752468f9197e95854373e5c
4 schema:datePublished 2018-05-12
5 schema:datePublishedReg 2018-05-12
6 schema:description Abstract Generators of pseudorandom sequences are widely used in practice. Generators of pseudorandom bit sequences occupy a special place among them; they are necessary for solving a number of important tasks, for example, for strong cryptography. The impossibility of predicting the following values of pseudorandom sequences is one of the basic requirements for such generators. Otherwise, these generators cannot be used to protect of information. It is generally accepted that if the stochastic sequence is stationary, then the prediction of such sequence is impossible. Our research shows that there are invariants for specific pseudorandom sequences that can be used to this prediction.The article is devoted to the method of prediction of pseudorandom bit sequences. The values of the autocorrelation coefficients for some lags are used. Good results are obtained for software-implemented stationary stochastic sequences.
7 schema:editor Nf0f4d1bbc63146d5b789a6f6ade535f5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1c370cb771fb431c871fd64f19795a92
12 schema:keywords Bit Sequence Generators
13 article
14 autocorrelation coefficients
15 basic requirements
16 bit sequence
17 coefficient
18 cryptographic resistance
19 cryptography
20 example
21 generator
22 good results
23 important task
24 impossibility
25 information
26 invariants
27 lag
28 method
29 method of prediction
30 number
31 place
32 practice
33 prediction
34 properties
35 pseudorandom bit sequence
36 pseudorandom bit sequence generator
37 pseudorandom sequences
38 requirements
39 research
40 resistance
41 results
42 sequence
43 sequence generator
44 software-implemented stationary stochastic sequences
45 special place
46 specific pseudorandom sequences
47 stationary stochastic sequences
48 statistic properties
49 stochastic sequences
50 strong cryptography
51 such generators
52 such sequences
53 task
54 values
55 schema:name Statistic Properties and Cryptographic Resistance of Pseudorandom Bit Sequence Generators
56 schema:pagination 437-446
57 schema:productId N36cc8dc3237b46d6a6acf0087f854d8a
58 Nac18ea16206948cbbceda7e511140375
59 schema:publisher Nbeb222ac2b5c4c639d601cb3f01684ed
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103943198
61 https://doi.org/10.1007/978-3-319-91008-6_44
62 schema:sdDatePublished 2021-12-01T20:09
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N88a75d0ca2df43d7afd69bfdf20659df
65 schema:url https://doi.org/10.1007/978-3-319-91008-6_44
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N079d99e26752468f9197e95854373e5c rdf:first sg:person.013346070406.40
70 rdf:rest N9c0b6c73130e4eeca0aa5ba3119b7c4b
71 N1c370cb771fb431c871fd64f19795a92 schema:isbn 978-3-319-91007-9
72 978-3-319-91008-6
73 schema:name Advances in Computer Science for Engineering and Education
74 rdf:type schema:Book
75 N2c95afb8eb874dfb83b9359c00155c6f schema:familyName Hu
76 schema:givenName Zhengbing
77 rdf:type schema:Person
78 N36cc8dc3237b46d6a6acf0087f854d8a schema:name doi
79 schema:value 10.1007/978-3-319-91008-6_44
80 rdf:type schema:PropertyValue
81 N62f013c0f6c8489a92e7a3aa75a81ef5 rdf:first sg:person.012435624030.73
82 rdf:rest rdf:nil
83 N7ce7bb755d1d4365a6af7fdb53c123c0 rdf:first Nf841faa8f0f84642a212f2ea3161d4ff
84 rdf:rest N9bec4955101148ebb19eb16d81aa7c4c
85 N87cfa081fd434428a7e8003f463a9d17 rdf:first Nc3cdfade72ce45c5bf53836c997f5ea5
86 rdf:rest rdf:nil
87 N88a75d0ca2df43d7afd69bfdf20659df schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N9bec4955101148ebb19eb16d81aa7c4c rdf:first Na129a39576df47f9a725ddcee3a76734
90 rdf:rest N87cfa081fd434428a7e8003f463a9d17
91 N9c0b6c73130e4eeca0aa5ba3119b7c4b rdf:first sg:person.07447446464.42
92 rdf:rest N62f013c0f6c8489a92e7a3aa75a81ef5
93 Na129a39576df47f9a725ddcee3a76734 schema:familyName Dychka
94 schema:givenName Ivan
95 rdf:type schema:Person
96 Nac18ea16206948cbbceda7e511140375 schema:name dimensions_id
97 schema:value pub.1103943198
98 rdf:type schema:PropertyValue
99 Nbeb222ac2b5c4c639d601cb3f01684ed schema:name Springer Nature
100 rdf:type schema:Organisation
101 Nc3cdfade72ce45c5bf53836c997f5ea5 schema:familyName He
102 schema:givenName Matthew
103 rdf:type schema:Person
104 Nf0f4d1bbc63146d5b789a6f6ade535f5 rdf:first N2c95afb8eb874dfb83b9359c00155c6f
105 rdf:rest N7ce7bb755d1d4365a6af7fdb53c123c0
106 Nf841faa8f0f84642a212f2ea3161d4ff schema:familyName Petoukhov
107 schema:givenName Sergey
108 rdf:type schema:Person
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
113 schema:name Statistics
114 rdf:type schema:DefinedTerm
115 sg:person.012435624030.73 schema:affiliation grid-institutes:grid.10067.30
116 schema:familyName Shevchuk
117 schema:givenName M.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012435624030.73
119 rdf:type schema:Person
120 sg:person.013346070406.40 schema:affiliation grid-institutes:grid.10067.30
121 schema:familyName Maksymovych
122 schema:givenName V.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346070406.40
124 rdf:type schema:Person
125 sg:person.07447446464.42 schema:affiliation grid-institutes:grid.10067.30
126 schema:familyName Nyemkova
127 schema:givenName E.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07447446464.42
129 rdf:type schema:Person
130 grid-institutes:grid.10067.30 schema:alternateName Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine
131 schema:name Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, Lviv, Ukraine
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...