Comparing Directed and Weighted Road Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Alyson Bittner , Brittany Terese Fasy , Maia Grudzien , Sayonita Ghosh Hajra , Jici Huang , Kristine Pelatt , Courtney Thatcher , Altansuren Tumurbaatar , Carola Wenk

ABSTRACT

With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well. More... »

PAGES

57-70

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-89593-2_4

DOI

http://dx.doi.org/10.1007/978-3-319-89593-2_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105916263


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "University at Buffalo (SUNY)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bittner", 
        "givenName": "Alyson", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Montana State University System", 
          "id": "https://www.grid.ac/institutes/grid.460394.c", 
          "name": [
            "Montana State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fasy", 
        "givenName": "Brittany Terese", 
        "id": "sg:person.01063376167.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063376167.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Montana State University System", 
          "id": "https://www.grid.ac/institutes/grid.460394.c", 
          "name": [
            "Montana State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grudzien", 
        "givenName": "Maia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hamline University", 
          "id": "https://www.grid.ac/institutes/grid.256769.9", 
          "name": [
            "Hamline University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hajra", 
        "givenName": "Sayonita Ghosh", 
        "id": "sg:person.013436521067.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013436521067.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Montana State University System", 
          "id": "https://www.grid.ac/institutes/grid.460394.c", 
          "name": [
            "Montana State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Jici", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Catherine University", 
          "id": "https://www.grid.ac/institutes/grid.264041.5", 
          "name": [
            "St. Catherine University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pelatt", 
        "givenName": "Kristine", 
        "id": "sg:person.016004223036.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016004223036.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Puget Sound", 
          "id": "https://www.grid.ac/institutes/grid.267047.0", 
          "name": [
            "University of Puget Sound"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thatcher", 
        "givenName": "Courtney", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Washington State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tumurbaatar", 
        "givenName": "Altansuren", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tulane University", 
          "id": "https://www.grid.ac/institutes/grid.265219.b", 
          "name": [
            "Tulane University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wenk", 
        "givenName": "Carola", 
        "id": "sg:person.011257742757.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257742757.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-02011-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003210291", 
          "https://doi.org/10.1007/978-3-642-02011-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02011-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003210291", 
          "https://doi.org/10.1007/978-3-642-02011-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-09-01249-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009258427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-014-0222-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010234278", 
          "https://doi.org/10.1007/s10707-014-0222-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1025794744", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25166-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025794744", 
          "https://doi.org/10.1007/978-3-319-25166-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-25166-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025794744", 
          "https://doi.org/10.1007/978-3-319-25166-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgt.3190010410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1037033171", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-42545-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037033171", 
          "https://doi.org/10.1007/978-3-319-42545-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1542362.1542407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037483242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-07-01191-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037523634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1064092.1064133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042457724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2424321.2424334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047722044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.062111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.062111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218001404003228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062949422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3138/carto.46.2.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071002510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2291-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071048183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/2291-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071048183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7155/jgaa.00014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073626300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18608/jla.2017.42.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090542977"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well.", 
    "editor": [
      {
        "familyName": "Chambers", 
        "givenName": "Erin Wolf", 
        "type": "Person"
      }, 
      {
        "familyName": "Fasy", 
        "givenName": "Brittany Terese", 
        "type": "Person"
      }, 
      {
        "familyName": "Ziegelmeier", 
        "givenName": "Lori", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-89593-2_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5301594", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-89592-5", 
        "978-3-319-89593-2"
      ], 
      "name": "Research in Computational Topology", 
      "type": "Book"
    }, 
    "name": "Comparing Directed and Weighted Road Maps", 
    "pagination": "57-70", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-89593-2_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f1a217420c256d1cbccd2e817a660220966f61adf7a941cbd81bd0b29bcf6358"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105916263"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-89593-2_4", 
      "https://app.dimensions.ai/details/publication/pub.1105916263"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T01:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000445.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-89593-2_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-89593-2_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-89593-2_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-89593-2_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-89593-2_4'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-89593-2_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7fa2a426d896491eae54cb663f13f2ae
4 schema:citation sg:pub.10.1007/978-3-319-25166-0
5 sg:pub.10.1007/978-3-319-42545-0
6 sg:pub.10.1007/978-3-642-02011-7_11
7 sg:pub.10.1007/s10707-014-0222-6
8 https://app.dimensions.ai/details/publication/pub.1025794744
9 https://app.dimensions.ai/details/publication/pub.1037033171
10 https://doi.org/10.1002/jgt.3190010410
11 https://doi.org/10.1090/s0273-0979-07-01191-3
12 https://doi.org/10.1090/s0273-0979-09-01249-x
13 https://doi.org/10.1103/physreve.93.062111
14 https://doi.org/10.1142/s0218001404003228
15 https://doi.org/10.1145/1064092.1064133
16 https://doi.org/10.1145/1542362.1542407
17 https://doi.org/10.1145/2424321.2424334
18 https://doi.org/10.18608/jla.2017.42.6
19 https://doi.org/10.3138/carto.46.2.115
20 https://doi.org/10.3141/2291-08
21 https://doi.org/10.7155/jgaa.00014
22 schema:datePublished 2018
23 schema:datePublishedReg 2018-01-01
24 schema:description With the increasing availability of GPS trajectory data, map construction algorithms have been developed that automatically construct road maps from this data. In order to assess the quality of such (constructed) road maps, the need for meaningful road map comparison algorithms becomes increasingly important. Indeed, different approaches for map comparison have been recently proposed; however, most of these approaches assume that the road maps are modeled as undirected embedded planar graphs. In this paper, we study map comparison algorithms for more realistic models of road maps: directed roads as well as weighted roads. In particular, we address two main questions: how close are the graphs to each other, and how close is the information presented by the graphs (i.e., traffic times, trajectories, and road type)? We propose new road network comparisons and give illustrative examples. Furthermore, our approaches do not only apply to road maps but can be used to compare other kinds of graphs as well.
25 schema:editor Ndfc220ab13354d0a98752b6c3a42e77b
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N94386f3f9d564d87aa9a397795a1cad1
30 schema:name Comparing Directed and Weighted Road Maps
31 schema:pagination 57-70
32 schema:productId N475e77561c3b455484d33297a32490e7
33 N4a921ceb3968436abed98778e301b47e
34 N6c687ff1ff1e4e478044aebb0e5490b1
35 schema:publisher Ne04ae27ba3914ffc918680af7d44f508
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105916263
37 https://doi.org/10.1007/978-3-319-89593-2_4
38 schema:sdDatePublished 2019-04-16T01:09
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nd5357ab79a064031a3884188eab42e04
41 schema:url http://link.springer.com/10.1007/978-3-319-89593-2_4
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N04d5204db22148e196c70909633d769e schema:name University at Buffalo (SUNY)
46 rdf:type schema:Organization
47 N151ccc682d6547bdbe39205d62bb86a2 schema:familyName Chambers
48 schema:givenName Erin Wolf
49 rdf:type schema:Person
50 N179a950109914b18bdcc381b3d763dfd schema:affiliation https://www.grid.ac/institutes/grid.460394.c
51 schema:familyName Grudzien
52 schema:givenName Maia
53 rdf:type schema:Person
54 N1c3a5f57987149008df1e6b85c517bae rdf:first Na315d0fd7be54016bba3bea306bc4631
55 rdf:rest N393aaaaf4dce4cdf82a9b498d161de17
56 N393aaaaf4dce4cdf82a9b498d161de17 rdf:first N47d6ec9e8b2d46f281828c8f41496a63
57 rdf:rest rdf:nil
58 N3ff7a981b1c14a94968203c815646150 rdf:first N64a8d6b2f0844b0397be8c5f8eb27313
59 rdf:rest Ncc6893261a004f8fafc9b950dd712e7a
60 N475e77561c3b455484d33297a32490e7 schema:name dimensions_id
61 schema:value pub.1105916263
62 rdf:type schema:PropertyValue
63 N47d6ec9e8b2d46f281828c8f41496a63 schema:familyName Ziegelmeier
64 schema:givenName Lori
65 rdf:type schema:Person
66 N4a921ceb3968436abed98778e301b47e schema:name readcube_id
67 schema:value f1a217420c256d1cbccd2e817a660220966f61adf7a941cbd81bd0b29bcf6358
68 rdf:type schema:PropertyValue
69 N5e05e7118bf446809ede769ee3487075 schema:affiliation https://www.grid.ac/institutes/grid.460394.c
70 schema:familyName Huang
71 schema:givenName Jici
72 rdf:type schema:Person
73 N64a8d6b2f0844b0397be8c5f8eb27313 schema:affiliation https://www.grid.ac/institutes/grid.267047.0
74 schema:familyName Thatcher
75 schema:givenName Courtney
76 rdf:type schema:Person
77 N6c687ff1ff1e4e478044aebb0e5490b1 schema:name doi
78 schema:value 10.1007/978-3-319-89593-2_4
79 rdf:type schema:PropertyValue
80 N7fa2a426d896491eae54cb663f13f2ae rdf:first Nc25d69906a274e22b933df0d823db56f
81 rdf:rest N9c6a0bbfadb5416a90a4a8332d5ed20e
82 N94386f3f9d564d87aa9a397795a1cad1 schema:isbn 978-3-319-89592-5
83 978-3-319-89593-2
84 schema:name Research in Computational Topology
85 rdf:type schema:Book
86 N9c6a0bbfadb5416a90a4a8332d5ed20e rdf:first sg:person.01063376167.08
87 rdf:rest Ne7b0cc0512d746c18eef3742e6410d1c
88 N9dbb23c1edd54f6e974385a7d08c02dc rdf:first sg:person.013436521067.41
89 rdf:rest Neba240152e1c4512872ef549c17d33e4
90 Na315d0fd7be54016bba3bea306bc4631 schema:familyName Fasy
91 schema:givenName Brittany Terese
92 rdf:type schema:Person
93 Naf6bc1ac6b0b41bc9c11389df6725dae rdf:first sg:person.016004223036.85
94 rdf:rest N3ff7a981b1c14a94968203c815646150
95 Nc25d69906a274e22b933df0d823db56f schema:affiliation N04d5204db22148e196c70909633d769e
96 schema:familyName Bittner
97 schema:givenName Alyson
98 rdf:type schema:Person
99 Ncc6893261a004f8fafc9b950dd712e7a rdf:first Nd09f18ce534940c18841d6a52e5d0e47
100 rdf:rest Ndb5a307f01b7491cb962d0cf053edb61
101 Nd09f18ce534940c18841d6a52e5d0e47 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
102 schema:familyName Tumurbaatar
103 schema:givenName Altansuren
104 rdf:type schema:Person
105 Nd5357ab79a064031a3884188eab42e04 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Ndb5a307f01b7491cb962d0cf053edb61 rdf:first sg:person.011257742757.08
108 rdf:rest rdf:nil
109 Ndfc220ab13354d0a98752b6c3a42e77b rdf:first N151ccc682d6547bdbe39205d62bb86a2
110 rdf:rest N1c3a5f57987149008df1e6b85c517bae
111 Ne04ae27ba3914ffc918680af7d44f508 schema:location Cham
112 schema:name Springer International Publishing
113 rdf:type schema:Organisation
114 Ne7b0cc0512d746c18eef3742e6410d1c rdf:first N179a950109914b18bdcc381b3d763dfd
115 rdf:rest N9dbb23c1edd54f6e974385a7d08c02dc
116 Neba240152e1c4512872ef549c17d33e4 rdf:first N5e05e7118bf446809ede769ee3487075
117 rdf:rest Naf6bc1ac6b0b41bc9c11389df6725dae
118 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
119 schema:name Information and Computing Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
122 schema:name Artificial Intelligence and Image Processing
123 rdf:type schema:DefinedTerm
124 sg:grant.5301594 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-89593-2_4
125 rdf:type schema:MonetaryGrant
126 sg:person.01063376167.08 schema:affiliation https://www.grid.ac/institutes/grid.460394.c
127 schema:familyName Fasy
128 schema:givenName Brittany Terese
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063376167.08
130 rdf:type schema:Person
131 sg:person.011257742757.08 schema:affiliation https://www.grid.ac/institutes/grid.265219.b
132 schema:familyName Wenk
133 schema:givenName Carola
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257742757.08
135 rdf:type schema:Person
136 sg:person.013436521067.41 schema:affiliation https://www.grid.ac/institutes/grid.256769.9
137 schema:familyName Hajra
138 schema:givenName Sayonita Ghosh
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013436521067.41
140 rdf:type schema:Person
141 sg:person.016004223036.85 schema:affiliation https://www.grid.ac/institutes/grid.264041.5
142 schema:familyName Pelatt
143 schema:givenName Kristine
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016004223036.85
145 rdf:type schema:Person
146 sg:pub.10.1007/978-3-319-25166-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025794744
147 https://doi.org/10.1007/978-3-319-25166-0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-319-42545-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037033171
150 https://doi.org/10.1007/978-3-319-42545-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-642-02011-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003210291
153 https://doi.org/10.1007/978-3-642-02011-7_11
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10707-014-0222-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010234278
156 https://doi.org/10.1007/s10707-014-0222-6
157 rdf:type schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1025794744 schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1037033171 schema:CreativeWork
160 https://doi.org/10.1002/jgt.3190010410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378895
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1090/s0273-0979-07-01191-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037523634
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1090/s0273-0979-09-01249-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009258427
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physreve.93.062111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749812
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1142/s0218001404003228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062949422
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1145/1064092.1064133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042457724
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1145/1542362.1542407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037483242
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1145/2424321.2424334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047722044
175 rdf:type schema:CreativeWork
176 https://doi.org/10.18608/jla.2017.42.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090542977
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3138/carto.46.2.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071002510
179 rdf:type schema:CreativeWork
180 https://doi.org/10.3141/2291-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071048183
181 rdf:type schema:CreativeWork
182 https://doi.org/10.7155/jgaa.00014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626300
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.256769.9 schema:alternateName Hamline University
185 schema:name Hamline University
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.264041.5 schema:alternateName St. Catherine University
188 schema:name St. Catherine University
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.265219.b schema:alternateName Tulane University
191 schema:name Tulane University
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.267047.0 schema:alternateName University of Puget Sound
194 schema:name University of Puget Sound
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
197 schema:name Washington State University
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.460394.c schema:alternateName Montana State University System
200 schema:name Montana State University
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...