Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-03-23

AUTHORS

Ryszard Matysiak , Philipp Gegenwart , Akira Ochiai , Frank Steglich

ABSTRACT

The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model. More... »

PAGES

359-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34

DOI

http://dx.doi.org/10.1007/978-3-319-78054-2_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101701216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Engineering and Computer Education, University of Zielona G\u00f3ra, ul. prof. Z. Szafrana 4, 65-516, Zielona G\u00f3ra, Poland", 
          "id": "http://www.grid.ac/institutes/grid.28048.36", 
          "name": [
            "Institute of Engineering and Computer Education, University of Zielona G\u00f3ra, ul. prof. Z. Szafrana 4, 65-516, Zielona G\u00f3ra, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matysiak", 
        "givenName": "Ryszard", 
        "id": "sg:person.016347423113.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347423113.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gegenwart", 
        "givenName": "Philipp", 
        "id": "sg:person.0734165233.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochiai", 
        "givenName": "Akira", 
        "id": "sg:person.015077154561.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077154561.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "Frank", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-03-23", 
    "datePublishedReg": "2018-03-23", 
    "description": "The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S=1/2$$\\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S=1/2$$\\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{1-x}$$\\end{document}Lux\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_x$$\\end{document})4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_4$$\\end{document}As3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_3$$\\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{1-x}$$\\end{document}Lux\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_x$$\\end{document})4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_4$$\\end{document}As3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_3$$\\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Deelman", 
        "givenName": "Ewa", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-78054-2_34", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-78053-5", 
        "978-3-319-78054-2"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum transfer matrix approach", 
      "transfer matrix approach", 
      "field-dependent specific heat", 
      "quantum spin chains", 
      "antiferromagnetic Heisenberg model", 
      "random impurity distribution", 
      "uniform magnetic field perpendicular", 
      "magnetic field perpendicular", 
      "spin chain", 
      "Heisenberg model", 
      "numerical method", 
      "field perpendicular", 
      "impurity distribution", 
      "specific heat", 
      "diluted compound", 
      "numerical results", 
      "extrapolation technique", 
      "pure system", 
      "physical model", 
      "microscopic parameters", 
      "HPC resources", 
      "good accuracy", 
      "model calculations", 
      "simulations", 
      "spin", 
      "field", 
      "model", 
      "additional verification", 
      "calculations", 
      "approach", 
      "transverse", 
      "perpendicular", 
      "parameters", 
      "description", 
      "accuracy", 
      "distribution", 
      "polydomain", 
      "applications", 
      "chain", 
      "system", 
      "technique", 
      "verification", 
      "heat", 
      "results", 
      "modification", 
      "resources", 
      "YB1", 
      "samples", 
      "compounds", 
      "method"
    ], 
    "name": "Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains", 
    "pagination": "359-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101701216"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-78054-2_34"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-78054-2_34", 
      "https://app.dimensions.ai/details/publication/pub.1101701216"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_114.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-78054-2_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-78054-2_34 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N7d74857784c84a04a576cec38ed3062a
4 schema:datePublished 2018-03-23
5 schema:datePublishedReg 2018-03-23
6 schema:description The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model.
7 schema:editor N51a3c308fdcb4320b20346cd7d4eea19
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Nb164074fd7a9441f86d8b3ed5ad11ffd
11 schema:keywords HPC resources
12 Heisenberg model
13 YB1
14 accuracy
15 additional verification
16 antiferromagnetic Heisenberg model
17 applications
18 approach
19 calculations
20 chain
21 compounds
22 description
23 diluted compound
24 distribution
25 extrapolation technique
26 field
27 field perpendicular
28 field-dependent specific heat
29 good accuracy
30 heat
31 impurity distribution
32 magnetic field perpendicular
33 method
34 microscopic parameters
35 model
36 model calculations
37 modification
38 numerical method
39 numerical results
40 parameters
41 perpendicular
42 physical model
43 polydomain
44 pure system
45 quantum spin chains
46 quantum transfer matrix approach
47 random impurity distribution
48 resources
49 results
50 samples
51 simulations
52 specific heat
53 spin
54 spin chain
55 system
56 technique
57 transfer matrix approach
58 transverse
59 uniform magnetic field perpendicular
60 verification
61 schema:name Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains
62 schema:pagination 359-367
63 schema:productId N0fc39fd041f8492bb26a5b3da08da1c5
64 Nf5ebd3dd793342bcb532e881fe3586da
65 schema:publisher Nb5560affa2fa41bc86f0a2f9fea3b1b3
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101701216
67 https://doi.org/10.1007/978-3-319-78054-2_34
68 schema:sdDatePublished 2022-10-01T06:52
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N6ebc03c4c9cc43a9b07b13852d6806e4
71 schema:url https://doi.org/10.1007/978-3-319-78054-2_34
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N063fe8fac4944c90b2aba939a53e5ac5 schema:familyName Deelman
76 schema:givenName Ewa
77 rdf:type schema:Person
78 N0d07712ca5774883a834e1ce4d744566 schema:familyName Dongarra
79 schema:givenName Jack
80 rdf:type schema:Person
81 N0fc39fd041f8492bb26a5b3da08da1c5 schema:name dimensions_id
82 schema:value pub.1101701216
83 rdf:type schema:PropertyValue
84 N25650df6014f4557814972a3c1c0df83 rdf:first N3bacc20b74ac4211850b7c1bb0dcdf8d
85 rdf:rest rdf:nil
86 N3bacc20b74ac4211850b7c1bb0dcdf8d schema:familyName Karczewski
87 schema:givenName Konrad
88 rdf:type schema:Person
89 N3fe1803eb74d4363897fd9d21fdd7bd3 schema:familyName Wyrzykowski
90 schema:givenName Roman
91 rdf:type schema:Person
92 N51a3c308fdcb4320b20346cd7d4eea19 rdf:first N3fe1803eb74d4363897fd9d21fdd7bd3
93 rdf:rest Nfc1569a50a9b4137889be85aa7b75095
94 N6ebc03c4c9cc43a9b07b13852d6806e4 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N7d74857784c84a04a576cec38ed3062a rdf:first sg:person.016347423113.42
97 rdf:rest Nd51073529dfe47378361335189a50b7c
98 N928945067307431e954f10c7155701a2 rdf:first sg:person.01061214726.76
99 rdf:rest rdf:nil
100 Nb164074fd7a9441f86d8b3ed5ad11ffd schema:isbn 978-3-319-78053-5
101 978-3-319-78054-2
102 schema:name Parallel Processing and Applied Mathematics
103 rdf:type schema:Book
104 Nb1b09772130f4c9fa7c78bf918825c09 rdf:first sg:person.015077154561.50
105 rdf:rest N928945067307431e954f10c7155701a2
106 Nb5560affa2fa41bc86f0a2f9fea3b1b3 schema:name Springer Nature
107 rdf:type schema:Organisation
108 Nd51073529dfe47378361335189a50b7c rdf:first sg:person.0734165233.79
109 rdf:rest Nb1b09772130f4c9fa7c78bf918825c09
110 Nec17aefb33054121b617fc678bbde117 rdf:first N063fe8fac4944c90b2aba939a53e5ac5
111 rdf:rest N25650df6014f4557814972a3c1c0df83
112 Nf5ebd3dd793342bcb532e881fe3586da schema:name doi
113 schema:value 10.1007/978-3-319-78054-2_34
114 rdf:type schema:PropertyValue
115 Nfc1569a50a9b4137889be85aa7b75095 rdf:first N0d07712ca5774883a834e1ce4d744566
116 rdf:rest Nec17aefb33054121b617fc678bbde117
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
124 schema:familyName Steglich
125 schema:givenName Frank
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
127 rdf:type schema:Person
128 sg:person.015077154561.50 schema:affiliation grid-institutes:grid.69566.3a
129 schema:familyName Ochiai
130 schema:givenName Akira
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077154561.50
132 rdf:type schema:Person
133 sg:person.016347423113.42 schema:affiliation grid-institutes:grid.28048.36
134 schema:familyName Matysiak
135 schema:givenName Ryszard
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347423113.42
137 rdf:type schema:Person
138 sg:person.0734165233.79 schema:affiliation grid-institutes:grid.7307.3
139 schema:familyName Gegenwart
140 schema:givenName Philipp
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79
142 rdf:type schema:Person
143 grid-institutes:grid.28048.36 schema:alternateName Institute of Engineering and Computer Education, University of Zielona Góra, ul. prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
144 schema:name Institute of Engineering and Computer Education, University of Zielona Góra, ul. prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
145 rdf:type schema:Organization
146 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
147 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
148 rdf:type schema:Organization
149 grid-institutes:grid.69566.3a schema:alternateName Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan
150 schema:name Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan
151 rdf:type schema:Organization
152 grid-institutes:grid.7307.3 schema:alternateName Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
153 schema:name Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
154 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...