Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-03-23

AUTHORS

Ryszard Matysiak , Philipp Gegenwart , Akira Ochiai , Frank Steglich

ABSTRACT

The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model. More... »

PAGES

359-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34

DOI

http://dx.doi.org/10.1007/978-3-319-78054-2_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101701216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Engineering and Computer Education, University of Zielona G\u00f3ra, ul. prof. Z. Szafrana 4, 65-516, Zielona G\u00f3ra, Poland", 
          "id": "http://www.grid.ac/institutes/grid.28048.36", 
          "name": [
            "Institute of Engineering and Computer Education, University of Zielona G\u00f3ra, ul. prof. Z. Szafrana 4, 65-516, Zielona G\u00f3ra, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matysiak", 
        "givenName": "Ryszard", 
        "id": "sg:person.016347423113.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347423113.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
            "Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gegenwart", 
        "givenName": "Philipp", 
        "id": "sg:person.0734165233.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ochiai", 
        "givenName": "Akira", 
        "id": "sg:person.015077154561.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077154561.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steglich", 
        "givenName": "Frank", 
        "id": "sg:person.01061214726.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-03-23", 
    "datePublishedReg": "2018-03-23", 
    "description": "The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S=1/2$$\\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S=1/2$$\\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{1-x}$$\\end{document}Lux\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_x$$\\end{document})4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_4$$\\end{document}As3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_3$$\\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_{1-x}$$\\end{document}Lux\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_x$$\\end{document})4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_4$$\\end{document}As3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$_3$$\\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Deelman", 
        "givenName": "Ewa", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-78054-2_34", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-78053-5", 
        "978-3-319-78054-2"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum transfer matrix approach", 
      "transfer matrix approach", 
      "field-dependent specific heat", 
      "quantum spin chains", 
      "antiferromagnetic Heisenberg model", 
      "random impurity distribution", 
      "uniform magnetic field perpendicular", 
      "magnetic field perpendicular", 
      "spin chain", 
      "Heisenberg model", 
      "numerical method", 
      "field perpendicular", 
      "impurity distribution", 
      "specific heat", 
      "diluted compound", 
      "numerical results", 
      "extrapolation technique", 
      "pure system", 
      "physical model", 
      "microscopic parameters", 
      "HPC resources", 
      "good accuracy", 
      "model calculations", 
      "simulations", 
      "spin", 
      "field", 
      "model", 
      "additional verification", 
      "calculations", 
      "approach", 
      "transverse", 
      "perpendicular", 
      "parameters", 
      "description", 
      "accuracy", 
      "distribution", 
      "polydomain", 
      "applications", 
      "chain", 
      "system", 
      "technique", 
      "verification", 
      "heat", 
      "results", 
      "modification", 
      "resources", 
      "YB1", 
      "samples", 
      "compounds", 
      "method"
    ], 
    "name": "Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains", 
    "pagination": "359-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101701216"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-78054-2_34"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-78054-2_34", 
      "https://app.dimensions.ai/details/publication/pub.1101701216"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_84.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-78054-2_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-78054-2_34'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-78054-2_34 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nbe92da7cfae44c6ea6c9b4e2df2de9d7
4 schema:datePublished 2018-03-23
5 schema:datePublishedReg 2018-03-23
6 schema:description The description of the numerical method of simulation based on the quantum transfer-matrix (QTM) approach is presented for diluted spin S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} chains. Modification of the extrapolation technique has been used to obtain better accuracy of numerical results. The simulations have been performed using the S=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=1/2$$\end{document} antiferromagnetic Heisenberg model with the transverse staggered field and a uniform magnetic field perpendicular to the staggered field applicable for the diluted compound (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document}. In the model calculations the fixed microscopic parameters established earlier for the pure system have been assumed and the random impurity distribution has been considered. The experimental field-dependent specific heat of the polydomain diluted (Yb1-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{1-x}$$\end{document}Lux\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_x$$\end{document})4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}As3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} sample is compared with that calculated using the HPC resources and providing additional verification of both the QTM method and the physical model.
7 schema:editor Nb74c532003434dda98560211da78aa0c
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N625b17a2784946b8a02fe51c4f1d6e17
11 schema:keywords HPC resources
12 Heisenberg model
13 YB1
14 accuracy
15 additional verification
16 antiferromagnetic Heisenberg model
17 applications
18 approach
19 calculations
20 chain
21 compounds
22 description
23 diluted compound
24 distribution
25 extrapolation technique
26 field
27 field perpendicular
28 field-dependent specific heat
29 good accuracy
30 heat
31 impurity distribution
32 magnetic field perpendicular
33 method
34 microscopic parameters
35 model
36 model calculations
37 modification
38 numerical method
39 numerical results
40 parameters
41 perpendicular
42 physical model
43 polydomain
44 pure system
45 quantum spin chains
46 quantum transfer matrix approach
47 random impurity distribution
48 resources
49 results
50 samples
51 simulations
52 specific heat
53 spin
54 spin chain
55 system
56 technique
57 transfer matrix approach
58 transverse
59 uniform magnetic field perpendicular
60 verification
61 schema:name Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains
62 schema:pagination 359-367
63 schema:productId N1b84e104918a42c1b7d754980f22909a
64 Nf438e3f2b9a94be2a82b99030a268a75
65 schema:publisher Nf465a57ff5db4abdb01a0621ae0e8db4
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101701216
67 https://doi.org/10.1007/978-3-319-78054-2_34
68 schema:sdDatePublished 2022-12-01T06:55
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N33cfb6a4201440948df43b20d114074e
71 schema:url https://doi.org/10.1007/978-3-319-78054-2_34
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N1b84e104918a42c1b7d754980f22909a schema:name doi
76 schema:value 10.1007/978-3-319-78054-2_34
77 rdf:type schema:PropertyValue
78 N33cfb6a4201440948df43b20d114074e schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N3b2048103f8d4ba795ce6b4ed9d5ff9f schema:familyName Dongarra
81 schema:givenName Jack
82 rdf:type schema:Person
83 N4028277ab36e4ae58378f0415e40b2c2 rdf:first Nad3f82c6bc7f400680c72c58327957c3
84 rdf:rest N5487179abba640ffba8c26fcd52511f0
85 N510d0affdf0848d88d48e0639bbae9b4 rdf:first sg:person.015077154561.50
86 rdf:rest N89ccfd4cd36c449988099e00502f80f2
87 N5487179abba640ffba8c26fcd52511f0 rdf:first Ne343a8b6080c4f6d8173c131d8dedc86
88 rdf:rest rdf:nil
89 N5b38e9f9183c4ee988853e432d39273b schema:familyName Wyrzykowski
90 schema:givenName Roman
91 rdf:type schema:Person
92 N625b17a2784946b8a02fe51c4f1d6e17 schema:isbn 978-3-319-78053-5
93 978-3-319-78054-2
94 schema:name Parallel Processing and Applied Mathematics
95 rdf:type schema:Book
96 N6bbae4438296440eabf71f7bdb9ed0e6 rdf:first N3b2048103f8d4ba795ce6b4ed9d5ff9f
97 rdf:rest N4028277ab36e4ae58378f0415e40b2c2
98 N89ccfd4cd36c449988099e00502f80f2 rdf:first sg:person.01061214726.76
99 rdf:rest rdf:nil
100 N8e586d08be9143f090e0a909840faea2 rdf:first sg:person.0734165233.79
101 rdf:rest N510d0affdf0848d88d48e0639bbae9b4
102 Nad3f82c6bc7f400680c72c58327957c3 schema:familyName Deelman
103 schema:givenName Ewa
104 rdf:type schema:Person
105 Nb74c532003434dda98560211da78aa0c rdf:first N5b38e9f9183c4ee988853e432d39273b
106 rdf:rest N6bbae4438296440eabf71f7bdb9ed0e6
107 Nbe92da7cfae44c6ea6c9b4e2df2de9d7 rdf:first sg:person.016347423113.42
108 rdf:rest N8e586d08be9143f090e0a909840faea2
109 Ne343a8b6080c4f6d8173c131d8dedc86 schema:familyName Karczewski
110 schema:givenName Konrad
111 rdf:type schema:Person
112 Nf438e3f2b9a94be2a82b99030a268a75 schema:name dimensions_id
113 schema:value pub.1101701216
114 rdf:type schema:PropertyValue
115 Nf465a57ff5db4abdb01a0621ae0e8db4 schema:name Springer Nature
116 rdf:type schema:Organisation
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:person.01061214726.76 schema:affiliation grid-institutes:grid.419507.e
124 schema:familyName Steglich
125 schema:givenName Frank
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061214726.76
127 rdf:type schema:Person
128 sg:person.015077154561.50 schema:affiliation grid-institutes:grid.69566.3a
129 schema:familyName Ochiai
130 schema:givenName Akira
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015077154561.50
132 rdf:type schema:Person
133 sg:person.016347423113.42 schema:affiliation grid-institutes:grid.28048.36
134 schema:familyName Matysiak
135 schema:givenName Ryszard
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347423113.42
137 rdf:type schema:Person
138 sg:person.0734165233.79 schema:affiliation grid-institutes:grid.7307.3
139 schema:familyName Gegenwart
140 schema:givenName Philipp
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734165233.79
142 rdf:type schema:Person
143 grid-institutes:grid.28048.36 schema:alternateName Institute of Engineering and Computer Education, University of Zielona Góra, ul. prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
144 schema:name Institute of Engineering and Computer Education, University of Zielona Góra, ul. prof. Z. Szafrana 4, 65-516, Zielona Góra, Poland
145 rdf:type schema:Organization
146 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
147 schema:name Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
148 rdf:type schema:Organization
149 grid-institutes:grid.69566.3a schema:alternateName Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan
150 schema:name Center for Low Temperature Science, Tohoku University, 980-8578, Sendai, Japan
151 rdf:type schema:Organization
152 grid-institutes:grid.7307.3 schema:alternateName Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
153 schema:name Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159, Augsburg, Germany
154 Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...