Basics of Machine Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

K. G. Srinivasa , G. M. Siddesh , H. Srinidhi

ABSTRACT

Data analytics consists of various techniques that need to be used for arriving at the final results. The amount of data coming from various sources is increasing and efficient machine learning methods have to be used for analysis purposes. Machine learning is one of the computing fields that have emerged over the years in various applications like text analytics, speech recognition, fraud detection in financial transactions, retail applications. It forms as the basic step for analytics. The different types of machine learning techniques are regression, classification, clustering, and others. In this chapter, the basics of machine learning are introduced with its key terminologies and its tasks. The different types of tasks that are involved in machine learning are data acquisition, data cleaning, data modeling, and data visualization. These tasks are discussed in this chapter with steps on getting started with machine learning. More... »

PAGES

127-138

Book

TITLE

Network Data Analytics

ISBN

978-3-319-77799-3
978-3-319-77800-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-77800-6_8

DOI

http://dx.doi.org/10.1007/978-3-319-77800-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103660887


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Ch. Brahm Prakash Government Engineering College"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinivasa", 
        "givenName": "K. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ramaiah Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddesh", 
        "givenName": "G. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ramaiah Institute of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinidhi", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Data analytics consists of various techniques that need to be used for arriving at the final results. The amount of data coming from various sources is increasing and efficient machine learning methods have to be used for analysis purposes. Machine learning is one of the computing fields that have emerged over the years in various applications like text analytics, speech recognition, fraud detection in financial transactions, retail applications. It forms as the basic step for analytics. The different types of machine learning techniques are regression, classification, clustering, and others. In this chapter, the basics of machine learning are introduced with its key terminologies and its tasks. The different types of tasks that are involved in machine learning are data acquisition, data cleaning, data modeling, and data visualization. These tasks are discussed in this chapter with steps on getting started with machine learning.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-77800-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-77799-3", 
        "978-3-319-77800-6"
      ], 
      "name": "Network Data Analytics", 
      "type": "Book"
    }, 
    "name": "Basics of Machine Learning", 
    "pagination": "127-138", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-77800-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e8268cbeaf3cc27be202fd28c2828c81ab5b2945b30486104c5e8ee7424f9cc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103660887"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-77800-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1103660887"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000375.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-77800-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77800-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77800-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77800-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77800-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-77800-6_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1187bb4a70a24422bbdf68affc8f9a4f
4 schema:datePublished 2018
5 schema:datePublishedReg 2018-01-01
6 schema:description Data analytics consists of various techniques that need to be used for arriving at the final results. The amount of data coming from various sources is increasing and efficient machine learning methods have to be used for analysis purposes. Machine learning is one of the computing fields that have emerged over the years in various applications like text analytics, speech recognition, fraud detection in financial transactions, retail applications. It forms as the basic step for analytics. The different types of machine learning techniques are regression, classification, clustering, and others. In this chapter, the basics of machine learning are introduced with its key terminologies and its tasks. The different types of tasks that are involved in machine learning are data acquisition, data cleaning, data modeling, and data visualization. These tasks are discussed in this chapter with steps on getting started with machine learning.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1fe87394789d44ee83c64641d35bf969
11 schema:name Basics of Machine Learning
12 schema:pagination 127-138
13 schema:productId N73fc3d32bb8c48098863d53e9523721d
14 Nd7ac34ce6a0a479c8dd466f896d04d37
15 Nff0aa1e03bee4b25807a7672a1575c09
16 schema:publisher N39cba0814ea04eabbf45a939dafb1a5a
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103660887
18 https://doi.org/10.1007/978-3-319-77800-6_8
19 schema:sdDatePublished 2019-04-15T10:48
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher Nb27c886c882d465c80dd135b82cee659
22 schema:url http://link.springer.com/10.1007/978-3-319-77800-6_8
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N056be6bc237e4fffae88506bdde3b2c0 schema:name Ramaiah Institute of Technology
27 rdf:type schema:Organization
28 N1187bb4a70a24422bbdf68affc8f9a4f rdf:first Nef79fe177ffa4d8fabc3887ab440c4f8
29 rdf:rest N12945146a04e45c9b5a5be62ac714702
30 N12945146a04e45c9b5a5be62ac714702 rdf:first Nd9eeb0f7227648b79a3d2226965cb531
31 rdf:rest N9cb06b0c758340359d650a5f57ab0666
32 N1fe87394789d44ee83c64641d35bf969 schema:isbn 978-3-319-77799-3
33 978-3-319-77800-6
34 schema:name Network Data Analytics
35 rdf:type schema:Book
36 N39cba0814ea04eabbf45a939dafb1a5a schema:location Cham
37 schema:name Springer International Publishing
38 rdf:type schema:Organisation
39 N73fc3d32bb8c48098863d53e9523721d schema:name doi
40 schema:value 10.1007/978-3-319-77800-6_8
41 rdf:type schema:PropertyValue
42 N9cb06b0c758340359d650a5f57ab0666 rdf:first Ne011b2b1325943f89cdda9cff7985b15
43 rdf:rest rdf:nil
44 Nb27c886c882d465c80dd135b82cee659 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nb6330444814a42c8bb1a2ee57e3de2f8 schema:name Ch. Brahm Prakash Government Engineering College
47 rdf:type schema:Organization
48 Nd7ac34ce6a0a479c8dd466f896d04d37 schema:name readcube_id
49 schema:value 5e8268cbeaf3cc27be202fd28c2828c81ab5b2945b30486104c5e8ee7424f9cc
50 rdf:type schema:PropertyValue
51 Nd9eeb0f7227648b79a3d2226965cb531 schema:affiliation Ne0fd65bb82fd4705b6ab1b3431f20cd8
52 schema:familyName Siddesh
53 schema:givenName G. M.
54 rdf:type schema:Person
55 Ne011b2b1325943f89cdda9cff7985b15 schema:affiliation N056be6bc237e4fffae88506bdde3b2c0
56 schema:familyName Srinidhi
57 schema:givenName H.
58 rdf:type schema:Person
59 Ne0fd65bb82fd4705b6ab1b3431f20cd8 schema:name Ramaiah Institute of Technology
60 rdf:type schema:Organization
61 Nef79fe177ffa4d8fabc3887ab440c4f8 schema:affiliation Nb6330444814a42c8bb1a2ee57e3de2f8
62 schema:familyName Srinivasa
63 schema:givenName K. G.
64 rdf:type schema:Person
65 Nff0aa1e03bee4b25807a7672a1575c09 schema:name dimensions_id
66 schema:value pub.1103660887
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...