Ontology type: schema:Chapter
2018
AUTHORSJosé Antonio García-Díaz , María Pilar Salas-Zárate , María Luisa Hernández-Alcaraz , Rafael Valencia-García , Juan Miguel Gómez-Berbís
ABSTRACTNowadays, financial data on social networks play an important role to predict the stock market. However, the exponential growth of financial information on social networks such as Twitter has led to a need for new technologies that automatically collect and categorise large volumes of information in a fast and easy manner. The Natural Language Processing (NLP) and sentiment analysis areas can solve this problem. In this respect, we propose a supervised machine learning method to detect the polarity of financial tweets. The method employs a set of lexico-morphological and semantic features, which were extracted with UMTextStats tool. Furthermore, we have conducted a comparison of the performance of three classification algorithms (J48, BayesNet, and SMO). The results showed that SMO provides better results than BayesNet and J48 algorithms, obtaining an F-measure of 73.2%. More... »
PAGES305-311
Trends and Advances in Information Systems and Technologies
ISBN
978-3-319-77702-3
978-3-319-77703-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-77703-0_31
DOIhttp://dx.doi.org/10.1007/978-3-319-77703-0_31
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101747663
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Murcia",
"id": "https://www.grid.ac/institutes/grid.10586.3a",
"name": [
"Universidad de Murcia"
],
"type": "Organization"
},
"familyName": "Garc\u00eda-D\u00edaz",
"givenName": "Jos\u00e9 Antonio",
"id": "sg:person.012573474340.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012573474340.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Instituto Tecnologico de Orizaba",
"id": "https://www.grid.ac/institutes/grid.466840.8",
"name": [
"Instituto Tecnol\u00f3gico de Orizaba"
],
"type": "Organization"
},
"familyName": "Salas-Z\u00e1rate",
"givenName": "Mar\u00eda Pilar",
"id": "sg:person.012525400101.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012525400101.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Murcia",
"id": "https://www.grid.ac/institutes/grid.10586.3a",
"name": [
"Universidad de Murcia"
],
"type": "Organization"
},
"familyName": "Hern\u00e1ndez-Alcaraz",
"givenName": "Mar\u00eda Luisa",
"id": "sg:person.07724351545.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07724351545.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Murcia",
"id": "https://www.grid.ac/institutes/grid.10586.3a",
"name": [
"Universidad de Murcia"
],
"type": "Organization"
},
"familyName": "Valencia-Garc\u00eda",
"givenName": "Rafael",
"id": "sg:person.012051275321.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012051275321.61"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Carlos III University of Madrid",
"id": "https://www.grid.ac/institutes/grid.7840.b",
"name": [
"Universidad Carlos III de Madrid"
],
"type": "Organization"
},
"familyName": "G\u00f3mez-Berb\u00eds",
"givenName": "Juan Miguel",
"id": "sg:person.010612052235.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010612052235.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.ins.2014.04.034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006371483"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ipm.2010.11.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006770584"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.knosys.2014.04.022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012178799"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.csl.2013.04.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018912760"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/asi.23533",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022123634"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1540-6261.2007.01232.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032604298"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0165551516645528",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035218806"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0165551516645528",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035218806"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/1475-679x.12123",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045976285"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mis.2013.30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061406426"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0165551514547842",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063751265"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/0165551514547842",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063751265"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.knosys.2017.04.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085057185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-69146-6_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092444223",
"https://doi.org/10.1007/978-3-319-69146-6_11"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/3003733.3003787",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096147120"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/3003733.3003787",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096147120"
],
"type": "CreativeWork"
}
],
"datePublished": "2018",
"datePublishedReg": "2018-01-01",
"description": "Nowadays, financial data on social networks play an important role to predict the stock market. However, the exponential growth of financial information on social networks such as Twitter has led to a need for new technologies that automatically collect and categorise large volumes of information in a fast and easy manner. The Natural Language Processing (NLP) and sentiment analysis areas can solve this problem. In this respect, we propose a supervised machine learning method to detect the polarity of financial tweets. The method employs a set of lexico-morphological and semantic features, which were extracted with UMTextStats tool. Furthermore, we have conducted a comparison of the performance of three classification algorithms (J48, BayesNet, and SMO). The results showed that SMO provides better results than BayesNet and J48 algorithms, obtaining an F-measure of 73.2%.",
"editor": [
{
"familyName": "Rocha",
"givenName": "\u00c1lvaro",
"type": "Person"
},
{
"familyName": "Adeli",
"givenName": "Hojjat",
"type": "Person"
},
{
"familyName": "Reis",
"givenName": "Lu\u00eds Paulo",
"type": "Person"
},
{
"familyName": "Costanzo",
"givenName": "Sandra",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-77703-0_31",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-77702-3",
"978-3-319-77703-0"
],
"name": "Trends and Advances in Information Systems and Technologies",
"type": "Book"
},
"name": "Machine Learning Based Sentiment Analysis on Spanish Financial Tweets",
"pagination": "305-311",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-77703-0_31"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"93b0f60f21a14c346d4249aa35052bd9bbb5e767537c3b492babc5c96eddb081"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101747663"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-77703-0_31",
"https://app.dimensions.ai/details/publication/pub.1101747663"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T01:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000604.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-77703-0_31"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77703-0_31'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77703-0_31'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77703-0_31'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77703-0_31'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
23 PREDICATES
40 URIs
20 LITERALS
8 BLANK NODES