When the Path Is Never Shortest: A Reality Check on Shortest Path Biocomputation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018

AUTHORS

Richard Mayne

ABSTRACT

Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes. More... »

PAGES

379-399

Book

TITLE

Shortest Path Solvers. From Software to Wetware

ISBN

978-3-319-77509-8
978-3-319-77510-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-77510-4_14

DOI

http://dx.doi.org/10.1007/978-3-319-77510-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103658025


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of the West of England", 
          "id": "https://www.grid.ac/institutes/grid.6518.a", 
          "name": [
            "University of the West of England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mayne", 
        "givenName": "Richard", 
        "id": "sg:person.01212417305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212417305.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00265-002-0487-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001725168", 
          "https://doi.org/10.1007/s00265-002-0487-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081079.2014.997528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002891684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004693913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004693913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013068776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03209695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019064401", 
          "https://doi.org/10.3758/bf03209695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/sb5000466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019275897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027616954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-007-0276-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028663693", 
          "https://doi.org/10.1007/s00114-007-0276-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-007-0276-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028663693", 
          "https://doi.org/10.1007/s00114-007-0276-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107415324.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031030859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1215037109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032377486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032884998", 
          "https://doi.org/10.1038/srep13148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01379461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034279831", 
          "https://doi.org/10.1007/bf01379461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01352301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034928811", 
          "https://doi.org/10.1007/bf01352301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26662-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035760527", 
          "https://doi.org/10.1007/978-3-319-26662-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26662-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035760527", 
          "https://doi.org/10.1007/978-3-319-26662-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ib00106c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036295521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26662-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036963997", 
          "https://doi.org/10.1007/978-3-319-26662-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2008.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038039907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040148381", 
          "https://doi.org/10.1038/35035159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040148381", 
          "https://doi.org/10.1038/35035159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040824474", 
          "https://doi.org/10.1038/nature08499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040824474", 
          "https://doi.org/10.1038/nature08499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0lc00399a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041844570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17445760.2015.1044005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044559198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2012.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047469101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2013.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047839063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1754-1611-3-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049090779", 
          "https://doi.org/10.1186/1754-1611-3-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jeb.048173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049638441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053027799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4704792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058048634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4235.585892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061171982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129626415400046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062907629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2017.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084771001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/7968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098933229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/7968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098933229"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.", 
    "editor": [
      {
        "familyName": "Adamatzky", 
        "givenName": "Andrew", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-77510-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-77509-8", 
        "978-3-319-77510-4"
      ], 
      "name": "Shortest Path Solvers. From Software to Wetware", 
      "type": "Book"
    }, 
    "name": "When the Path Is Never Shortest: A Reality Check on Shortest Path Biocomputation", 
    "pagination": "379-399", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-77510-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1dd78b4a320f638a0693e0d9da0163452167529a1328db29a6bd165f51e5fe79"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103658025"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-77510-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1103658025"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-77510-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77510-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77510-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77510-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-77510-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-77510-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N6364f53c9b534aa9bea9035551f59347
4 schema:citation sg:pub.10.1007/978-3-319-26662-6
5 sg:pub.10.1007/978-3-319-26662-6_1
6 sg:pub.10.1007/bf01352301
7 sg:pub.10.1007/bf01379461
8 sg:pub.10.1007/s00114-007-0276-5
9 sg:pub.10.1007/s00265-002-0487-x
10 sg:pub.10.1038/35035159
11 sg:pub.10.1038/nature08499
12 sg:pub.10.1038/srep13148
13 sg:pub.10.1186/1754-1611-3-11
14 sg:pub.10.3758/bf03209695
15 https://doi.org/10.1016/j.biosystems.2013.01.008
16 https://doi.org/10.1016/j.biosystems.2017.04.001
17 https://doi.org/10.1016/j.jtbi.2005.08.017
18 https://doi.org/10.1016/j.jtbi.2012.04.003
19 https://doi.org/10.1016/j.jtbi.2012.11.025
20 https://doi.org/10.1016/j.orgel.2013.10.004
21 https://doi.org/10.1016/j.physd.2008.01.028
22 https://doi.org/10.1017/cbo9781107415324.004
23 https://doi.org/10.1021/sb5000466
24 https://doi.org/10.1038/msb4100061
25 https://doi.org/10.1039/c0lc00399a
26 https://doi.org/10.1039/c2ib00106c
27 https://doi.org/10.1063/1.4704792
28 https://doi.org/10.1073/pnas.1215037109
29 https://doi.org/10.1080/03081079.2014.997528
30 https://doi.org/10.1080/17445760.2015.1044005
31 https://doi.org/10.1109/4235.585892
32 https://doi.org/10.1126/science.1177894
33 https://doi.org/10.1142/7968
34 https://doi.org/10.1142/s0129626415400046
35 https://doi.org/10.1242/jeb.048173
36 schema:datePublished 2018
37 schema:datePublishedReg 2018-01-01
38 schema:description Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.
39 schema:editor Nc18bebb7388e468cb9c496593a27db84
40 schema:genre chapter
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf Nd1e9ad2c41874acda42bfe74f2b67121
44 schema:name When the Path Is Never Shortest: A Reality Check on Shortest Path Biocomputation
45 schema:pagination 379-399
46 schema:productId N37de5c2c48a44ff9b17d76f71504f2cc
47 N810974d1679143758714dc386d55ba65
48 Nd20c0a7e7b2b41dc98c603755473f4ac
49 schema:publisher N83676a196c34414c94e6136a0552176f
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103658025
51 https://doi.org/10.1007/978-3-319-77510-4_14
52 schema:sdDatePublished 2019-04-15T14:07
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N64ad9046d09642cb9ea2210e818028fd
55 schema:url http://link.springer.com/10.1007/978-3-319-77510-4_14
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N000f241ff53b4e64a8fdc1492b6445e9 schema:familyName Adamatzky
60 schema:givenName Andrew
61 rdf:type schema:Person
62 N37de5c2c48a44ff9b17d76f71504f2cc schema:name doi
63 schema:value 10.1007/978-3-319-77510-4_14
64 rdf:type schema:PropertyValue
65 N6364f53c9b534aa9bea9035551f59347 rdf:first sg:person.01212417305.02
66 rdf:rest rdf:nil
67 N64ad9046d09642cb9ea2210e818028fd schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N810974d1679143758714dc386d55ba65 schema:name readcube_id
70 schema:value 1dd78b4a320f638a0693e0d9da0163452167529a1328db29a6bd165f51e5fe79
71 rdf:type schema:PropertyValue
72 N83676a196c34414c94e6136a0552176f schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 Nc18bebb7388e468cb9c496593a27db84 rdf:first N000f241ff53b4e64a8fdc1492b6445e9
76 rdf:rest rdf:nil
77 Nd1e9ad2c41874acda42bfe74f2b67121 schema:isbn 978-3-319-77509-8
78 978-3-319-77510-4
79 schema:name Shortest Path Solvers. From Software to Wetware
80 rdf:type schema:Book
81 Nd20c0a7e7b2b41dc98c603755473f4ac schema:name dimensions_id
82 schema:value pub.1103658025
83 rdf:type schema:PropertyValue
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
88 schema:name Computation Theory and Mathematics
89 rdf:type schema:DefinedTerm
90 sg:person.01212417305.02 schema:affiliation https://www.grid.ac/institutes/grid.6518.a
91 schema:familyName Mayne
92 schema:givenName Richard
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212417305.02
94 rdf:type schema:Person
95 sg:pub.10.1007/978-3-319-26662-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035760527
96 https://doi.org/10.1007/978-3-319-26662-6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-319-26662-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036963997
99 https://doi.org/10.1007/978-3-319-26662-6_1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01352301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034928811
102 https://doi.org/10.1007/bf01352301
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01379461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034279831
105 https://doi.org/10.1007/bf01379461
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00114-007-0276-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028663693
108 https://doi.org/10.1007/s00114-007-0276-5
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00265-002-0487-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001725168
111 https://doi.org/10.1007/s00265-002-0487-x
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/35035159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040148381
114 https://doi.org/10.1038/35035159
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature08499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040824474
117 https://doi.org/10.1038/nature08499
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/srep13148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032884998
120 https://doi.org/10.1038/srep13148
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/1754-1611-3-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049090779
123 https://doi.org/10.1186/1754-1611-3-11
124 rdf:type schema:CreativeWork
125 sg:pub.10.3758/bf03209695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019064401
126 https://doi.org/10.3758/bf03209695
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.biosystems.2013.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047839063
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.biosystems.2017.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084771001
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jtbi.2005.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013068776
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jtbi.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053027799
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jtbi.2012.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047469101
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.orgel.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027616954
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.physd.2008.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038039907
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/cbo9781107415324.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031030859
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1021/sb5000466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019275897
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1038/msb4100061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004693913
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1039/c0lc00399a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041844570
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1039/c2ib00106c schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295521
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.4704792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058048634
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1073/pnas.1215037109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032377486
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/03081079.2014.997528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002891684
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/17445760.2015.1044005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559198
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/4235.585892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171982
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1177894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022022797
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1142/7968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098933229
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1142/s0129626415400046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062907629
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1242/jeb.048173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049638441
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.6518.a schema:alternateName University of the West of England
171 schema:name University of the West of England
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...