Topic Lifecycle on Social Networks: Analyzing the Effects of Semantic Continuity and Social Communities View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-03-01

AUTHORS

Kuntal Dey , Saroj Kaushik , Kritika Garg , Ritvik Shrivastava

ABSTRACT

Topic lifecycle analysis on Twitter, a branch of study that investigates Twitter topics from their birth through lifecycle to death, has gained immense mainstream research popularity. In the literature, topics are often treated as one of (a) hashtags (independent from other hashtags), (b) a burst of keywords in a short time span or (c) a latent concept space captured by advanced text analysis methodologies, such as Latent Dirichlet Allocation (LDA). The first two approaches are not capable of recognizing topics where different users use different hashtags to express the same concept (semantically related), while the third approach misses out the user’s explicit intent expressed via hashtags. In our work, we use a word embedding based approach to cluster different hashtags together, and the temporal concurrency of the hashtag usages, thus forming topics (a semantically and temporally related group of hashtags). We present a novel analysis of topic lifecycles with respect to communities. We characterize the participation of social communities in the topic clusters, and analyze the lifecycle of topic clusters with respect to such participation. We derive first-of-its-kind novel insights with respect to the complex evolution of topics over communities and time: temporal morphing of topics over hashtags within communities, how the hashtags die in some communities but morph into some other hashtags in some other communities (that, it is a community-level phenomenon), and how specific communities adopt to specific hashtags. Our work is fundamental in the space of topic lifecycle modeling and understanding in communities: it redefines our understanding of topic lifecycles and shows that the social boundaries of topic lifecycles are deeply ingrained with community behavior. More... »

PAGES

29-42

References to SciGraph publications

Book

TITLE

Advances in Information Retrieval

ISBN

978-3-319-76940-0
978-3-319-76941-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-76941-7_3

DOI

http://dx.doi.org/10.1007/978-3-319-76941-7_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101242736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dey", 
        "givenName": "Kuntal", 
        "id": "sg:person.012701231562.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701231562.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "IIT, Delhi, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaushik", 
        "givenName": "Saroj", 
        "id": "sg:person.010245136346.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010245136346.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ch. Brahm Prakash GEC, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Kritika", 
        "id": "sg:person.014450244065.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450244065.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NSIT, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shrivastava", 
        "givenName": "Ritvik", 
        "id": "sg:person.012431733344.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012431733344.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/2339530.2339540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009001942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/asi.21489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1814245.1814249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012673285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/coli_a_00277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014875634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2505515.2505525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015015358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601602103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016125157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41154-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236504", 
          "https://doi.org/10.1007/978-3-642-41154-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/182.358434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018860881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1807167.1807306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019719996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1772690.1772751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024478168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1643823.1643864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025993524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-36973-5_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029725884", 
          "https://doi.org/10.1007/978-3-642-36973-5_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1935826.1935863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036347494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2187836.2187907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-01", 
    "datePublishedReg": "2018-03-01", 
    "description": "Topic lifecycle analysis on Twitter, a branch of study that investigates Twitter topics from their birth through lifecycle to death, has gained immense mainstream research popularity. In the literature, topics are often treated as one of (a) hashtags (independent from other hashtags), (b) a burst of keywords in a short time span or (c) a latent concept space captured by advanced text analysis methodologies, such as Latent Dirichlet Allocation (LDA). The first two approaches are not capable of recognizing topics where different users use different hashtags to express the same concept (semantically related), while the third approach misses out the user\u2019s explicit intent expressed via hashtags. In our work, we use a word embedding based approach to cluster different hashtags together, and the temporal concurrency of the hashtag usages, thus forming topics (a semantically and temporally related group of hashtags). We present a novel analysis of topic lifecycles with respect to communities. We characterize the participation of social communities in the topic clusters, and analyze the lifecycle of topic clusters with respect to such participation. We derive first-of-its-kind novel insights with respect to the complex evolution of topics over communities and time: temporal morphing of topics over hashtags within communities, how the hashtags die in some communities but morph into some other hashtags in some other communities (that, it is a community-level phenomenon), and how specific communities adopt to specific hashtags. Our work is fundamental in the space of topic lifecycle modeling and understanding in communities: it redefines our understanding of topic lifecycles and shows that the social boundaries of topic lifecycles are deeply ingrained with community behavior.", 
    "editor": [
      {
        "familyName": "Pasi", 
        "givenName": "Gabriella", 
        "type": "Person"
      }, 
      {
        "familyName": "Piwowarski", 
        "givenName": "Benjamin", 
        "type": "Person"
      }, 
      {
        "familyName": "Azzopardi", 
        "givenName": "Leif", 
        "type": "Person"
      }, 
      {
        "familyName": "Hanbury", 
        "givenName": "Allan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-76941-7_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-76940-0", 
        "978-3-319-76941-7"
      ], 
      "name": "Advances in Information Retrieval", 
      "type": "Book"
    }, 
    "name": "Topic Lifecycle on Social Networks: Analyzing the Effects of Semantic Continuity and Social Communities", 
    "pagination": "29-42", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-76941-7_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "50f116384a810da526d9ae8d14e57aa68881335a00b73b885ea9d40e683a7bb1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101242736"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-76941-7_3", 
      "https://app.dimensions.ai/details/publication/pub.1101242736"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100782_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-76941-7_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76941-7_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76941-7_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76941-7_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76941-7_3'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      42 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-76941-7_3 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3442d55e06ad4630b34696b31efe0142
4 schema:citation sg:pub.10.1007/978-3-642-36973-5_46
5 sg:pub.10.1007/978-3-642-41154-0_12
6 https://doi.org/10.1002/asi.21489
7 https://doi.org/10.1073/pnas.0601602103
8 https://doi.org/10.1088/1742-5468/2008/10/p10008
9 https://doi.org/10.1145/1643823.1643864
10 https://doi.org/10.1145/1772690.1772751
11 https://doi.org/10.1145/1807167.1807306
12 https://doi.org/10.1145/1814245.1814249
13 https://doi.org/10.1145/182.358434
14 https://doi.org/10.1145/1935826.1935863
15 https://doi.org/10.1145/2187836.2187907
16 https://doi.org/10.1145/2339530.2339540
17 https://doi.org/10.1145/2505515.2505525
18 https://doi.org/10.1162/coli_a_00277
19 https://doi.org/10.3115/v1/d14-1162
20 schema:datePublished 2018-03-01
21 schema:datePublishedReg 2018-03-01
22 schema:description Topic lifecycle analysis on Twitter, a branch of study that investigates Twitter topics from their birth through lifecycle to death, has gained immense mainstream research popularity. In the literature, topics are often treated as one of (a) hashtags (independent from other hashtags), (b) a burst of keywords in a short time span or (c) a latent concept space captured by advanced text analysis methodologies, such as Latent Dirichlet Allocation (LDA). The first two approaches are not capable of recognizing topics where different users use different hashtags to express the same concept (semantically related), while the third approach misses out the user’s explicit intent expressed via hashtags. In our work, we use a word embedding based approach to cluster different hashtags together, and the temporal concurrency of the hashtag usages, thus forming topics (a semantically and temporally related group of hashtags). We present a novel analysis of topic lifecycles with respect to communities. We characterize the participation of social communities in the topic clusters, and analyze the lifecycle of topic clusters with respect to such participation. We derive first-of-its-kind novel insights with respect to the complex evolution of topics over communities and time: temporal morphing of topics over hashtags within communities, how the hashtags die in some communities but morph into some other hashtags in some other communities (that, it is a community-level phenomenon), and how specific communities adopt to specific hashtags. Our work is fundamental in the space of topic lifecycle modeling and understanding in communities: it redefines our understanding of topic lifecycles and shows that the social boundaries of topic lifecycles are deeply ingrained with community behavior.
23 schema:editor N9fce5ead058c480baab52eccbec50ce9
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N4a6c0f827e0c4e19aad3b3df31362ea2
28 schema:name Topic Lifecycle on Social Networks: Analyzing the Effects of Semantic Continuity and Social Communities
29 schema:pagination 29-42
30 schema:productId N25a8cd85ef1c43efb066b1c7dbaa6e00
31 N2ebb9a202cfb463390e053e6864e71d4
32 Ne82da6039cb1474fbc98ac3ee4244f9c
33 schema:publisher Ne9973f6175e841b99663eb8502f85f6a
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101242736
35 https://doi.org/10.1007/978-3-319-76941-7_3
36 schema:sdDatePublished 2019-04-16T04:59
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nb600091b81b940e78d3b0e5804826bef
39 schema:url https://link.springer.com/10.1007%2F978-3-319-76941-7_3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N190564821a964a86bb28ac705bdeb588 schema:name IIT, Delhi, New Delhi, India
44 rdf:type schema:Organization
45 N1da43199fb1c47f4ad6081abe5707619 schema:familyName Hanbury
46 schema:givenName Allan
47 rdf:type schema:Person
48 N25a8cd85ef1c43efb066b1c7dbaa6e00 schema:name readcube_id
49 schema:value 50f116384a810da526d9ae8d14e57aa68881335a00b73b885ea9d40e683a7bb1
50 rdf:type schema:PropertyValue
51 N2ebb9a202cfb463390e053e6864e71d4 schema:name dimensions_id
52 schema:value pub.1101242736
53 rdf:type schema:PropertyValue
54 N3442d55e06ad4630b34696b31efe0142 rdf:first sg:person.012701231562.41
55 rdf:rest N3fc4d7dc5cae48ae86d26c8f271c5bfe
56 N3fc4d7dc5cae48ae86d26c8f271c5bfe rdf:first sg:person.010245136346.59
57 rdf:rest Nbc6ae546f1904392966dffb62e4de6fb
58 N4a6c0f827e0c4e19aad3b3df31362ea2 schema:isbn 978-3-319-76940-0
59 978-3-319-76941-7
60 schema:name Advances in Information Retrieval
61 rdf:type schema:Book
62 N4dc826103e354a2881487a8856fb161d schema:name NSIT, New Delhi, India
63 rdf:type schema:Organization
64 N789ac742d824447d82cbe05436db1138 schema:familyName Azzopardi
65 schema:givenName Leif
66 rdf:type schema:Person
67 N94951fccb71344718e2e6cd7a67913cb schema:familyName Piwowarski
68 schema:givenName Benjamin
69 rdf:type schema:Person
70 N9825e4db86954faa94802591fdd23b52 rdf:first N94951fccb71344718e2e6cd7a67913cb
71 rdf:rest Nfee7f1bc7be044b794ba69eb95ebb576
72 N9fce5ead058c480baab52eccbec50ce9 rdf:first Naf24c460ba7849a48ba71ba7e272c661
73 rdf:rest N9825e4db86954faa94802591fdd23b52
74 Na9150654fb21455b9a54f7684148455c schema:name Ch. Brahm Prakash GEC, New Delhi, India
75 rdf:type schema:Organization
76 Naf24c460ba7849a48ba71ba7e272c661 schema:familyName Pasi
77 schema:givenName Gabriella
78 rdf:type schema:Person
79 Nb600091b81b940e78d3b0e5804826bef schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nbc6ae546f1904392966dffb62e4de6fb rdf:first sg:person.014450244065.98
82 rdf:rest Nd31eb7a00ba94834b28f330d81194eec
83 Nd31eb7a00ba94834b28f330d81194eec rdf:first sg:person.012431733344.51
84 rdf:rest rdf:nil
85 Ne82da6039cb1474fbc98ac3ee4244f9c schema:name doi
86 schema:value 10.1007/978-3-319-76941-7_3
87 rdf:type schema:PropertyValue
88 Ne9973f6175e841b99663eb8502f85f6a schema:location Cham
89 schema:name Springer International Publishing
90 rdf:type schema:Organisation
91 Nfed4b9dc174f46e6be928d91dd68e520 rdf:first N1da43199fb1c47f4ad6081abe5707619
92 rdf:rest rdf:nil
93 Nfee7f1bc7be044b794ba69eb95ebb576 rdf:first N789ac742d824447d82cbe05436db1138
94 rdf:rest Nfed4b9dc174f46e6be928d91dd68e520
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information Systems
100 rdf:type schema:DefinedTerm
101 sg:person.010245136346.59 schema:affiliation N190564821a964a86bb28ac705bdeb588
102 schema:familyName Kaushik
103 schema:givenName Saroj
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010245136346.59
105 rdf:type schema:Person
106 sg:person.012431733344.51 schema:affiliation N4dc826103e354a2881487a8856fb161d
107 schema:familyName Shrivastava
108 schema:givenName Ritvik
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012431733344.51
110 rdf:type schema:Person
111 sg:person.012701231562.41 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
112 schema:familyName Dey
113 schema:givenName Kuntal
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701231562.41
115 rdf:type schema:Person
116 sg:person.014450244065.98 schema:affiliation Na9150654fb21455b9a54f7684148455c
117 schema:familyName Garg
118 schema:givenName Kritika
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450244065.98
120 rdf:type schema:Person
121 sg:pub.10.1007/978-3-642-36973-5_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029725884
122 https://doi.org/10.1007/978-3-642-36973-5_46
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/978-3-642-41154-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017236504
125 https://doi.org/10.1007/978-3-642-41154-0_12
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/asi.21489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642815
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1145/1643823.1643864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025993524
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1145/1772690.1772751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024478168
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/1807167.1807306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019719996
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1145/1814245.1814249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012673285
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/182.358434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018860881
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/1935826.1935863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036347494
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/2187836.2187907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765800
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/2339530.2339540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009001942
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1145/2505515.2505525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015015358
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1162/coli_a_00277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014875634
152 rdf:type schema:CreativeWork
153 https://doi.org/10.3115/v1/d14-1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110523
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
156 schema:name IBM Research, New Delhi, India
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...