Selecting Relevant Educational Attributes for Predicting Students’ Academic Performance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Abir Abid , Ilhem Kallel , Ignacio J. Blanco , Mounir Benayed

ABSTRACT

Predicting students’ academic performance is one of the oldest and most popular applications of educational data mining. It helps to estimate the unknown evaluation of a student’s performance. However, a huge amount of data with different formats and from multiple sources may contain a large number of features supposed as not-relevant that could influence the prediction results. The main objective of this paper is to improve the effectiveness of a predictive model for students’ academic performance. For this purpose, we propose a methodology to carry out a comparative study for evaluating the influence of feature selection techniques on the prediction of students’ academic performance. In our study, F-measure parameter is used to evaluate the effectiveness of the selected techniques. Two real data sources are used in this work, Mathematics and language courses. The outcomes are compared and discussed in order to identify the technique that has the best influence for an accurate predictive model. More... »

PAGES

650-660

References to SciGraph publications

Book

TITLE

Intelligent Systems Design and Applications

ISBN

978-3-319-76347-7
978-3-319-76348-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-76348-4_63

DOI

http://dx.doi.org/10.1007/978-3-319-76348-4_63

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101677999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Specialist Studies In Education", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/13", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Education", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sfax", 
          "id": "https://www.grid.ac/institutes/grid.412124.0", 
          "name": [
            "University of Sfax"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abid", 
        "givenName": "Abir", 
        "id": "sg:person.013056425070.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056425070.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sfax", 
          "id": "https://www.grid.ac/institutes/grid.412124.0", 
          "name": [
            "University of Sfax", 
            "ISIMS: Higher Institute of Computer Science and Multimedia of Sfax"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kallel", 
        "givenName": "Ilhem", 
        "id": "sg:person.013324546562.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324546562.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "University of Granada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanco", 
        "givenName": "Ignacio J.", 
        "id": "sg:person.014637772232.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637772232.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sfax", 
          "id": "https://www.grid.ac/institutes/grid.412124.0", 
          "name": [
            "University of Sfax"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benayed", 
        "givenName": "Mounir", 
        "id": "sg:person.016035060200.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035060200.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-1-55860-377-6.50023-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013049849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-012-0487-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016145627", 
          "https://doi.org/10.1007/s10115-012-0487-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1016218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020629296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1456223.1456245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026205473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-1-55860-247-2.50037-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026477407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-57868-4_57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029649421", 
          "https://doi.org/10.1007/3-540-57868-4_57"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/widm.1075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039368480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-3578-9_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049783609", 
          "https://doi.org/10.1007/978-1-4939-3578-9_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.990133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/rita.2013.2244695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061446370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chb.2017.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083544232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-53480-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083915491", 
          "https://doi.org/10.1007/978-3-319-53480-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20894/ijdmta.102.005.002.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090770467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ithet.2016.7760756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093624837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icacte.2008.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094345406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ithet.2017.8067821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095157758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420035933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109725501"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Predicting students\u2019 academic performance is one of the oldest and most popular applications of educational data mining. It helps to estimate the unknown evaluation of a student\u2019s performance. However, a huge amount of data with different formats and from multiple sources may contain a large number of features supposed as not-relevant that could influence the prediction results. The main objective of this paper is to improve the effectiveness of a predictive model for students\u2019 academic performance. For this purpose, we propose a methodology to carry out a comparative study for evaluating the influence of feature selection techniques on the prediction of students\u2019 academic performance. In our study, F-measure parameter is used to evaluate the effectiveness of the selected techniques. Two real data sources are used in this work, Mathematics and language courses. The outcomes are compared and discussed in order to identify the technique that has the best influence for an accurate predictive model.", 
    "editor": [
      {
        "familyName": "Abraham", 
        "givenName": "Ajith", 
        "type": "Person"
      }, 
      {
        "familyName": "Muhuri", 
        "givenName": "Pranab Kr.", 
        "type": "Person"
      }, 
      {
        "familyName": "Muda", 
        "givenName": "Azah Kamilah", 
        "type": "Person"
      }, 
      {
        "familyName": "Gandhi", 
        "givenName": "Niketa", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-76348-4_63", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-76347-7", 
        "978-3-319-76348-4"
      ], 
      "name": "Intelligent Systems Design and Applications", 
      "type": "Book"
    }, 
    "name": "Selecting Relevant Educational Attributes for Predicting Students\u2019 Academic Performance", 
    "pagination": "650-660", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-76348-4_63"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0ac7ff450a017cac3850e8d55fd6080eacb6cd5cc8b531e3ccd307116c01cb2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101677999"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-76348-4_63", 
      "https://app.dimensions.ai/details/publication/pub.1101677999"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000604.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-76348-4_63"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76348-4_63'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76348-4_63'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76348-4_63'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-76348-4_63'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-76348-4_63 schema:about anzsrc-for:13
2 anzsrc-for:1303
3 schema:author N512d5a570e084b099d7736ea98736dc2
4 schema:citation sg:pub.10.1007/3-540-57868-4_57
5 sg:pub.10.1007/978-1-4939-3578-9_17
6 sg:pub.10.1007/978-3-319-53480-0_2
7 sg:pub.10.1007/s10115-012-0487-8
8 sg:pub.10.1023/a:1010933404324
9 https://doi.org/10.1002/widm.1075
10 https://doi.org/10.1016/b978-1-55860-247-2.50037-1
11 https://doi.org/10.1016/b978-1-55860-377-6.50023-2
12 https://doi.org/10.1016/j.chb.2017.01.047
13 https://doi.org/10.1109/34.990133
14 https://doi.org/10.1109/icacte.2008.26
15 https://doi.org/10.1109/ithet.2016.7760756
16 https://doi.org/10.1109/ithet.2017.8067821
17 https://doi.org/10.1109/rita.2013.2244695
18 https://doi.org/10.1145/1456223.1456245
19 https://doi.org/10.1201/9781420035933
20 https://doi.org/10.1214/aos/1016218223
21 https://doi.org/10.20894/ijdmta.102.005.002.007
22 schema:datePublished 2018
23 schema:datePublishedReg 2018-01-01
24 schema:description Predicting students’ academic performance is one of the oldest and most popular applications of educational data mining. It helps to estimate the unknown evaluation of a student’s performance. However, a huge amount of data with different formats and from multiple sources may contain a large number of features supposed as not-relevant that could influence the prediction results. The main objective of this paper is to improve the effectiveness of a predictive model for students’ academic performance. For this purpose, we propose a methodology to carry out a comparative study for evaluating the influence of feature selection techniques on the prediction of students’ academic performance. In our study, F-measure parameter is used to evaluate the effectiveness of the selected techniques. Two real data sources are used in this work, Mathematics and language courses. The outcomes are compared and discussed in order to identify the technique that has the best influence for an accurate predictive model.
25 schema:editor Nca64e730ce0d47c299c7c19ce791ddf8
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Nf0d78ca138ad4995b68488df4a5a2b4b
30 schema:name Selecting Relevant Educational Attributes for Predicting Students’ Academic Performance
31 schema:pagination 650-660
32 schema:productId N4419a191788d43f2b2cb4490a0d23c13
33 N53cb382683394031a8d08db1a7016e48
34 Ncb5f636fcbf14c17b779149d0ba3e05e
35 schema:publisher N2c1f2f068ab4493ca9a346825e3b9b9b
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101677999
37 https://doi.org/10.1007/978-3-319-76348-4_63
38 schema:sdDatePublished 2019-04-15T22:38
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N542fdf5a826647c0b9a8eedac149706e
41 schema:url http://link.springer.com/10.1007/978-3-319-76348-4_63
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N2c1f2f068ab4493ca9a346825e3b9b9b schema:location Cham
46 schema:name Springer International Publishing
47 rdf:type schema:Organisation
48 N3141da214556486ea06c3c50442e173c rdf:first sg:person.013324546562.32
49 rdf:rest N5a4e9accf9814310b3e4666ac279122f
50 N4419a191788d43f2b2cb4490a0d23c13 schema:name readcube_id
51 schema:value e0ac7ff450a017cac3850e8d55fd6080eacb6cd5cc8b531e3ccd307116c01cb2
52 rdf:type schema:PropertyValue
53 N4780e3969e03453ca36bbc52b939acd0 schema:name University of Granada
54 rdf:type schema:Organization
55 N512d5a570e084b099d7736ea98736dc2 rdf:first sg:person.013056425070.54
56 rdf:rest N3141da214556486ea06c3c50442e173c
57 N53cb382683394031a8d08db1a7016e48 schema:name dimensions_id
58 schema:value pub.1101677999
59 rdf:type schema:PropertyValue
60 N542fdf5a826647c0b9a8eedac149706e schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N5a4e9accf9814310b3e4666ac279122f rdf:first sg:person.014637772232.64
63 rdf:rest Nc84d80440b3a473c87cd7f4f2e6fce73
64 N85fc1605d5e6484eb8dbacdfa2147819 schema:familyName Abraham
65 schema:givenName Ajith
66 rdf:type schema:Person
67 N8cbcb815cb714ad5a0eab077857c5cd2 schema:familyName Muhuri
68 schema:givenName Pranab Kr.
69 rdf:type schema:Person
70 N90dbf6dac9f4415a87ef874ed16c429b schema:familyName Gandhi
71 schema:givenName Niketa
72 rdf:type schema:Person
73 N95dc7808cad3427e9464ed007ca50dd6 schema:familyName Muda
74 schema:givenName Azah Kamilah
75 rdf:type schema:Person
76 Naea288c575fb4167be84ebf8d65ec9b9 rdf:first N95dc7808cad3427e9464ed007ca50dd6
77 rdf:rest Nd25004f054dd47768490c57f41f02722
78 Nc84d80440b3a473c87cd7f4f2e6fce73 rdf:first sg:person.016035060200.43
79 rdf:rest rdf:nil
80 Nca64e730ce0d47c299c7c19ce791ddf8 rdf:first N85fc1605d5e6484eb8dbacdfa2147819
81 rdf:rest Nee8ffa61d46d429bbfdc4fd585df1f17
82 Ncb5f636fcbf14c17b779149d0ba3e05e schema:name doi
83 schema:value 10.1007/978-3-319-76348-4_63
84 rdf:type schema:PropertyValue
85 Nd25004f054dd47768490c57f41f02722 rdf:first N90dbf6dac9f4415a87ef874ed16c429b
86 rdf:rest rdf:nil
87 Nee8ffa61d46d429bbfdc4fd585df1f17 rdf:first N8cbcb815cb714ad5a0eab077857c5cd2
88 rdf:rest Naea288c575fb4167be84ebf8d65ec9b9
89 Nf0d78ca138ad4995b68488df4a5a2b4b schema:isbn 978-3-319-76347-7
90 978-3-319-76348-4
91 schema:name Intelligent Systems Design and Applications
92 rdf:type schema:Book
93 anzsrc-for:13 schema:inDefinedTermSet anzsrc-for:
94 schema:name Education
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1303 schema:inDefinedTermSet anzsrc-for:
97 schema:name Specialist Studies In Education
98 rdf:type schema:DefinedTerm
99 sg:person.013056425070.54 schema:affiliation https://www.grid.ac/institutes/grid.412124.0
100 schema:familyName Abid
101 schema:givenName Abir
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056425070.54
103 rdf:type schema:Person
104 sg:person.013324546562.32 schema:affiliation https://www.grid.ac/institutes/grid.412124.0
105 schema:familyName Kallel
106 schema:givenName Ilhem
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324546562.32
108 rdf:type schema:Person
109 sg:person.014637772232.64 schema:affiliation N4780e3969e03453ca36bbc52b939acd0
110 schema:familyName Blanco
111 schema:givenName Ignacio J.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014637772232.64
113 rdf:type schema:Person
114 sg:person.016035060200.43 schema:affiliation https://www.grid.ac/institutes/grid.412124.0
115 schema:familyName Benayed
116 schema:givenName Mounir
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016035060200.43
118 rdf:type schema:Person
119 sg:pub.10.1007/3-540-57868-4_57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029649421
120 https://doi.org/10.1007/3-540-57868-4_57
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-1-4939-3578-9_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049783609
123 https://doi.org/10.1007/978-1-4939-3578-9_17
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-319-53480-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083915491
126 https://doi.org/10.1007/978-3-319-53480-0_2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s10115-012-0487-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016145627
129 https://doi.org/10.1007/s10115-012-0487-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
132 https://doi.org/10.1023/a:1010933404324
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/widm.1075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039368480
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/b978-1-55860-247-2.50037-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026477407
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/b978-1-55860-377-6.50023-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049849
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.chb.2017.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083544232
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/34.990133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157378
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/icacte.2008.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094345406
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/ithet.2016.7760756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093624837
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/ithet.2017.8067821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157758
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/rita.2013.2244695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446370
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/1456223.1456245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026205473
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1201/9781420035933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109725501
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1214/aos/1016218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020629296
157 rdf:type schema:CreativeWork
158 https://doi.org/10.20894/ijdmta.102.005.002.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090770467
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.412124.0 schema:alternateName University of Sfax
161 schema:name ISIMS: Higher Institute of Computer Science and Multimedia of Sfax
162 University of Sfax
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...