Secret Image Sharing for (k, k) Threshold Based on Chinese Remainder Theorem and Image Characteristics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-02-15

AUTHORS

Xuehu Yan , Yuliang Lu , Lintao Liu , Song Wan , Wanmeng Ding , Hanlin Liu

ABSTRACT

Secret image sharing (SIS) based on Chinese remainder theorem (CRTSIS) has lower recovery computation complexity than Shamir’s polynomial-based SIS. Most of existing CRTSIS schemes generally have the limitations of auxiliary encryption and lossy recovery, which are caused by that their ideas are borrowed from secret data sharing. According to image characteristics and CRT, in this paper we propose a CRTSIS method for (k, k) threshold, based on enlarging the grayscale image pixel values. Our method owns the advantages of no auxiliary encryption and lossless recovery for grayscale image. We perform experiments and analysis to illustrate our effectiveness. More... »

PAGES

174-181

Book

TITLE

Image and Video Technology

ISBN

978-3-319-75785-8
978-3-319-75786-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-75786-5_15

DOI

http://dx.doi.org/10.1007/978-3-319-75786-5_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101045351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Song", 
        "id": "sg:person.012077574322.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wanmeng", 
        "id": "sg:person.010577640471.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/grid.412110.7", 
          "name": [
            "National University of Defense Technology, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hanlin", 
        "id": "sg:person.011535473267.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-02-15", 
    "datePublishedReg": "2018-02-15", 
    "description": "Secret image sharing (SIS) based on Chinese remainder theorem (CRTSIS) has lower recovery computation complexity than Shamir\u2019s polynomial-based SIS. Most of existing CRTSIS schemes generally have the limitations of auxiliary encryption and lossy recovery, which are caused by that their ideas are borrowed from secret data sharing. According to image characteristics and CRT, in this paper we propose a CRTSIS method for\u00a0(k,\u00a0k)\u00a0threshold, based on enlarging the grayscale image pixel values. Our method owns the advantages of no auxiliary encryption and lossless recovery for grayscale image. We perform experiments and analysis to illustrate our effectiveness.", 
    "editor": [
      {
        "familyName": "Paul", 
        "givenName": "Manoranjan", 
        "type": "Person"
      }, 
      {
        "familyName": "Hitoshi", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Huang", 
        "givenName": "Qingming", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-75786-5_15", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-75785-8", 
        "978-3-319-75786-5"
      ], 
      "name": "Image and Video Technology", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image sharing", 
      "polynomial-based secret image sharing", 
      "auxiliary encryption", 
      "Chinese Remainder Theorem", 
      "image sharing", 
      "low recovery computation complexity", 
      "secret data sharing", 
      "image characteristics", 
      "Remainder Theorem", 
      "image pixel values", 
      "lossy recovery", 
      "lossless recovery", 
      "data sharing", 
      "computation complexity", 
      "grayscale images", 
      "pixel values", 
      "encryption", 
      "sharing", 
      "complexity", 
      "images", 
      "scheme", 
      "method", 
      "effectiveness", 
      "advantages", 
      "idea", 
      "limitations", 
      "experiments", 
      "threshold", 
      "characteristics", 
      "theorem", 
      "CRT", 
      "analysis", 
      "values", 
      "recovery", 
      "paper"
    ], 
    "name": "Secret Image Sharing for (k, k) Threshold Based on Chinese Remainder Theorem and Image Characteristics", 
    "pagination": "174-181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101045351"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-75786-5_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-75786-5_15", 
      "https://app.dimensions.ai/details/publication/pub.1101045351"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_433.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-75786-5_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75786-5_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75786-5_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75786-5_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75786-5_15'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      22 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-75786-5_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf64f3844dc434be8bb387a0b3d4389a9
4 schema:datePublished 2018-02-15
5 schema:datePublishedReg 2018-02-15
6 schema:description Secret image sharing (SIS) based on Chinese remainder theorem (CRTSIS) has lower recovery computation complexity than Shamir’s polynomial-based SIS. Most of existing CRTSIS schemes generally have the limitations of auxiliary encryption and lossy recovery, which are caused by that their ideas are borrowed from secret data sharing. According to image characteristics and CRT, in this paper we propose a CRTSIS method for (k, k) threshold, based on enlarging the grayscale image pixel values. Our method owns the advantages of no auxiliary encryption and lossless recovery for grayscale image. We perform experiments and analysis to illustrate our effectiveness.
7 schema:editor N7f36f78d4ca34dc7ae4fbc22798684fc
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne45335abfbd8425b8b6688e167f5b33e
11 schema:keywords CRT
12 Chinese Remainder Theorem
13 Remainder Theorem
14 advantages
15 analysis
16 auxiliary encryption
17 characteristics
18 complexity
19 computation complexity
20 data sharing
21 effectiveness
22 encryption
23 experiments
24 grayscale images
25 idea
26 image characteristics
27 image pixel values
28 image sharing
29 images
30 limitations
31 lossless recovery
32 lossy recovery
33 low recovery computation complexity
34 method
35 paper
36 pixel values
37 polynomial-based secret image sharing
38 recovery
39 scheme
40 secret data sharing
41 secret image sharing
42 sharing
43 theorem
44 threshold
45 values
46 schema:name Secret Image Sharing for (k, k) Threshold Based on Chinese Remainder Theorem and Image Characteristics
47 schema:pagination 174-181
48 schema:productId Naabf77a3238f45ac8869666519503d4e
49 Nf0d9169b54234226acf9639e9af63e64
50 schema:publisher Nb3ef4eb5c324420c800b78b9ea2ddff0
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101045351
52 https://doi.org/10.1007/978-3-319-75786-5_15
53 schema:sdDatePublished 2022-12-01T06:53
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N4e9e2653cf2543f7964229fab12efa25
56 schema:url https://doi.org/10.1007/978-3-319-75786-5_15
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N0b285bfef0e142e1bf53355b36c9039c rdf:first N637252d20c05456da12697135dcf0f1e
61 rdf:rest rdf:nil
62 N1394d0f1c9c1402d8b9b80779f7bd6bb schema:familyName Hitoshi
63 schema:givenName Carlos
64 rdf:type schema:Person
65 N1706aa508a774bddb100f42460579c81 rdf:first sg:person.013517427271.32
66 rdf:rest N7c17cf0f3e834da4b79d74e673863f8b
67 N4e9e2653cf2543f7964229fab12efa25 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N4f5f50a0de6c4dc9936e9ec18ba1fce1 rdf:first N1394d0f1c9c1402d8b9b80779f7bd6bb
70 rdf:rest N0b285bfef0e142e1bf53355b36c9039c
71 N637252d20c05456da12697135dcf0f1e schema:familyName Huang
72 schema:givenName Qingming
73 rdf:type schema:Person
74 N6d750c70bac04e248b14cb2e4d6622fa rdf:first sg:person.011535473267.30
75 rdf:rest rdf:nil
76 N7c17cf0f3e834da4b79d74e673863f8b rdf:first sg:person.012077574322.79
77 rdf:rest Na655279881494e23965f6ce36343e0c4
78 N7f36f78d4ca34dc7ae4fbc22798684fc rdf:first N88e0bdf6f811479d8a4322fa78192ac6
79 rdf:rest N4f5f50a0de6c4dc9936e9ec18ba1fce1
80 N88e0bdf6f811479d8a4322fa78192ac6 schema:familyName Paul
81 schema:givenName Manoranjan
82 rdf:type schema:Person
83 Na655279881494e23965f6ce36343e0c4 rdf:first sg:person.010577640471.37
84 rdf:rest N6d750c70bac04e248b14cb2e4d6622fa
85 Naabf77a3238f45ac8869666519503d4e schema:name doi
86 schema:value 10.1007/978-3-319-75786-5_15
87 rdf:type schema:PropertyValue
88 Nb3ef4eb5c324420c800b78b9ea2ddff0 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Ne45335abfbd8425b8b6688e167f5b33e schema:isbn 978-3-319-75785-8
91 978-3-319-75786-5
92 schema:name Image and Video Technology
93 rdf:type schema:Book
94 Nf0d9169b54234226acf9639e9af63e64 schema:name dimensions_id
95 schema:value pub.1101045351
96 rdf:type schema:PropertyValue
97 Nf64f3844dc434be8bb387a0b3d4389a9 rdf:first sg:person.010467364517.31
98 rdf:rest Nfe8bf81ac60d41c8b1ad2d2ca7cf0b1c
99 Nfe8bf81ac60d41c8b1ad2d2ca7cf0b1c rdf:first sg:person.015112370271.93
100 rdf:rest N1706aa508a774bddb100f42460579c81
101 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
102 schema:name Information and Computing Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
105 schema:name Artificial Intelligence and Image Processing
106 rdf:type schema:DefinedTerm
107 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
108 schema:familyName Yan
109 schema:givenName Xuehu
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
111 rdf:type schema:Person
112 sg:person.010577640471.37 schema:affiliation grid-institutes:grid.412110.7
113 schema:familyName Ding
114 schema:givenName Wanmeng
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37
116 rdf:type schema:Person
117 sg:person.011535473267.30 schema:affiliation grid-institutes:grid.412110.7
118 schema:familyName Liu
119 schema:givenName Hanlin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30
121 rdf:type schema:Person
122 sg:person.012077574322.79 schema:affiliation grid-institutes:grid.412110.7
123 schema:familyName Wan
124 schema:givenName Song
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79
126 rdf:type schema:Person
127 sg:person.013517427271.32 schema:affiliation grid-institutes:grid.412110.7
128 schema:familyName Liu
129 schema:givenName Lintao
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
131 rdf:type schema:Person
132 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
133 schema:familyName Lu
134 schema:givenName Yuliang
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
136 rdf:type schema:Person
137 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, 230037, Hefei, China
138 schema:name National University of Defense Technology, 230037, Hefei, China
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...