The Fuzzy Henstock–Kurzweil Delta Integral on Time Scales View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-05-08

AUTHORS

Dafang Zhao , Guoju Ye , Wei Liu , Delfim F. M. Torres

ABSTRACT

We investigate properties of the fuzzy Henstock–Kurzweil delta integral (shortly, FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integral) on time scales, and obtain two necessary and sufficient conditions for FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integrability. The concept of uniformly FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integrability is introduced. Under this concept, we obtain a uniformly integrability convergence theorem. Finally, we prove monotone and dominated convergence theorems for the FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integral. More... »

PAGES

525-541

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-75647-9_41

DOI

http://dx.doi.org/10.1007/978-3-319-75647-9_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103877828


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P. R. China", 
          "id": "http://www.grid.ac/institutes/grid.462271.4", 
          "name": [
            "College of Science, Hohai University, 210098, Nanjing, P. R. China", 
            "School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Dafang", 
        "id": "sg:person.012305220221.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Hohai University, 210098, Nanjing, P. R. China", 
          "id": "http://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Science, Hohai University, 210098, Nanjing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Guoju", 
        "id": "sg:person.016065243026.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065243026.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Hohai University, 210098, Nanjing, P. R. China", 
          "id": "http://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Science, Hohai University, 210098, Nanjing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Wei", 
        "id": "sg:person.010465776266.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465776266.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810\u2013193, Aveiro, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.7311.4", 
          "name": [
            "Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810\u2013193, Aveiro, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torres", 
        "givenName": "Delfim F. M.", 
        "id": "sg:person.01005441563.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005441563.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-05-08", 
    "datePublishedReg": "2018-05-08", 
    "description": "We investigate properties of the fuzzy Henstock\u2013Kurzweil delta integral (shortly, FHK \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varDelta $$\\end{document}-integral) on time scales, and obtain two necessary and sufficient conditions for FHK \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varDelta $$\\end{document}-integrability. The concept of uniformly FHK \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varDelta $$\\end{document}-integrability is introduced. Under this concept, we obtain a uniformly integrability convergence theorem. Finally, we prove monotone and dominated convergence theorems for the FHK \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varDelta $$\\end{document}-integral.", 
    "editor": [
      {
        "familyName": "Pinelas", 
        "givenName": "Sandra", 
        "type": "Person"
      }, 
      {
        "familyName": "Caraballo", 
        "givenName": "Tom\u00e1s", 
        "type": "Person"
      }, 
      {
        "familyName": "Kloeden", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Graef", 
        "givenName": "John R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-75647-9_41", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-75646-2", 
        "978-3-319-75647-9"
      ], 
      "name": "Differential and Difference Equations with Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "convergence theorem", 
      "integrals", 
      "sufficient conditions", 
      "integrability", 
      "time scales", 
      "theorem", 
      "properties", 
      "scale", 
      "concept", 
      "conditions", 
      "FHK"
    ], 
    "name": "The Fuzzy Henstock\u2013Kurzweil Delta Integral on Time Scales", 
    "pagination": "525-541", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103877828"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-75647-9_41"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-75647-9_41", 
      "https://app.dimensions.ai/details/publication/pub.1103877828"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_419.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-75647-9_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75647-9_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75647-9_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75647-9_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75647-9_41'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      35 URIs      28 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-75647-9_41 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nc5de73065a9b4904839277b100f1b54d
4 schema:datePublished 2018-05-08
5 schema:datePublishedReg 2018-05-08
6 schema:description We investigate properties of the fuzzy Henstock–Kurzweil delta integral (shortly, FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integral) on time scales, and obtain two necessary and sufficient conditions for FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integrability. The concept of uniformly FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integrability is introduced. Under this concept, we obtain a uniformly integrability convergence theorem. Finally, we prove monotone and dominated convergence theorems for the FHK \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}-integral.
7 schema:editor N642049c1af97419aaf0064e22551d88f
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N7e0b4327534d4a59854027e8474a7ea3
11 schema:keywords FHK
12 concept
13 conditions
14 convergence theorem
15 integrability
16 integrals
17 properties
18 scale
19 sufficient conditions
20 theorem
21 time scales
22 schema:name The Fuzzy Henstock–Kurzweil Delta Integral on Time Scales
23 schema:pagination 525-541
24 schema:productId N96ea5f7793ff4c8d9cae9538ee574474
25 Nae9e6a818bc74f10a0bc6f9634947a8f
26 schema:publisher N4f1ec82aeff3407aadf493bcc9ee4a2a
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103877828
28 https://doi.org/10.1007/978-3-319-75647-9_41
29 schema:sdDatePublished 2022-12-01T06:53
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N979e663641e343cabde4275b83793d14
32 schema:url https://doi.org/10.1007/978-3-319-75647-9_41
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N01286892eb6e43feaeb618e7b1f5c4a5 rdf:first sg:person.016065243026.01
37 rdf:rest N46bd91027c89485e86978f0cad823069
38 N02cf9d6ebb39433fa392da6a5cd78cf5 schema:familyName Pinelas
39 schema:givenName Sandra
40 rdf:type schema:Person
41 N05269abec98b475daf929299279de30e schema:familyName Graef
42 schema:givenName John R.
43 rdf:type schema:Person
44 N41bea6a8823d4fa298ae0a4b30459937 rdf:first N05269abec98b475daf929299279de30e
45 rdf:rest rdf:nil
46 N45347f39835c41339d592213ee1b4344 rdf:first Ne5044928a728481f851643f6b3d1d0e4
47 rdf:rest N41bea6a8823d4fa298ae0a4b30459937
48 N46bd91027c89485e86978f0cad823069 rdf:first sg:person.010465776266.28
49 rdf:rest N781d68f3192143c0a090e53857ac0f87
50 N4f1ec82aeff3407aadf493bcc9ee4a2a schema:name Springer Nature
51 rdf:type schema:Organisation
52 N642049c1af97419aaf0064e22551d88f rdf:first N02cf9d6ebb39433fa392da6a5cd78cf5
53 rdf:rest N6fc84ef33e1943dca5f357909860091c
54 N6fc84ef33e1943dca5f357909860091c rdf:first Neb858bdb213c46c185dae00db190eee5
55 rdf:rest N45347f39835c41339d592213ee1b4344
56 N781d68f3192143c0a090e53857ac0f87 rdf:first sg:person.01005441563.25
57 rdf:rest rdf:nil
58 N7e0b4327534d4a59854027e8474a7ea3 schema:isbn 978-3-319-75646-2
59 978-3-319-75647-9
60 schema:name Differential and Difference Equations with Applications
61 rdf:type schema:Book
62 N96ea5f7793ff4c8d9cae9538ee574474 schema:name dimensions_id
63 schema:value pub.1103877828
64 rdf:type schema:PropertyValue
65 N979e663641e343cabde4275b83793d14 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nae9e6a818bc74f10a0bc6f9634947a8f schema:name doi
68 schema:value 10.1007/978-3-319-75647-9_41
69 rdf:type schema:PropertyValue
70 Nc5de73065a9b4904839277b100f1b54d rdf:first sg:person.012305220221.44
71 rdf:rest N01286892eb6e43feaeb618e7b1f5c4a5
72 Ne5044928a728481f851643f6b3d1d0e4 schema:familyName Kloeden
73 schema:givenName Peter
74 rdf:type schema:Person
75 Neb858bdb213c46c185dae00db190eee5 schema:familyName Caraballo
76 schema:givenName Tomás
77 rdf:type schema:Person
78 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
79 schema:name Psychology and Cognitive Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
82 schema:name Psychology
83 rdf:type schema:DefinedTerm
84 sg:person.01005441563.25 schema:affiliation grid-institutes:grid.7311.4
85 schema:familyName Torres
86 schema:givenName Delfim F. M.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005441563.25
88 rdf:type schema:Person
89 sg:person.010465776266.28 schema:affiliation grid-institutes:grid.257065.3
90 schema:familyName Liu
91 schema:givenName Wei
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010465776266.28
93 rdf:type schema:Person
94 sg:person.012305220221.44 schema:affiliation grid-institutes:grid.462271.4
95 schema:familyName Zhao
96 schema:givenName Dafang
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012305220221.44
98 rdf:type schema:Person
99 sg:person.016065243026.01 schema:affiliation grid-institutes:grid.257065.3
100 schema:familyName Ye
101 schema:givenName Guoju
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016065243026.01
103 rdf:type schema:Person
104 grid-institutes:grid.257065.3 schema:alternateName College of Science, Hohai University, 210098, Nanjing, P. R. China
105 schema:name College of Science, Hohai University, 210098, Nanjing, P. R. China
106 rdf:type schema:Organization
107 grid-institutes:grid.462271.4 schema:alternateName School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P. R. China
108 schema:name College of Science, Hohai University, 210098, Nanjing, P. R. China
109 School of Mathematics and Statistics, Hubei Normal University, 435002, Huangshi, P. R. China
110 rdf:type schema:Organization
111 grid-institutes:grid.7311.4 schema:alternateName Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810–193, Aveiro, Portugal
112 schema:name Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810–193, Aveiro, Portugal
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...