3D Probabilistic Morphable Models for Brain Tumor Segmentation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-02-04

AUTHORS

David A. Jimenez , Hernán F. García , Andres M. Álvarez , Álvaro A. Orozco

ABSTRACT

Segmenting abnormal areas in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common segmentation techniques used in these tasks, lack of the property of modeling the shape structure that the tumor presents, which leads to an inaccurate segmentation. In this paper, we propose a probabilistic framework in order to model the shape variations related to abnormal tissues relevant in brain tumor segmentation procedures. For this purpose the database of the Brain Tumor Image Segmentation Challenge (Brats) 2015 is used. We use a Probabilistic extension of the 3D morphable model to learn those tumor variations between patients. Then from the trained model, we perform a non-rigid matching to fit the deformed modeled tumor in the medical image. The experimental results show that by using Probabilistic morphable models, the non-rigid properties of the abnormal tissues can be learned and hence improve the segmentation task. More... »

PAGES

314-322

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-319-75192-4
978-3-319-75193-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_38

DOI

http://dx.doi.org/10.1007/978-3-319-75193-1_38

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100810054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jimenez", 
        "givenName": "David A.", 
        "id": "sg:person.07703364717.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703364717.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Hern\u00e1n F.", 
        "id": "sg:person.014220534313.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220534313.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez", 
        "givenName": "Andres M.", 
        "id": "sg:person.012757230130.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Grupo de Investigaci\u00f3n en Autom\u00e1tica, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco", 
        "givenName": "\u00c1lvaro A.", 
        "id": "sg:person.013562027545.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mri.2013.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000180446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2196/jmir.2930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000212247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-014-0251-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000469689", 
          "https://doi.org/10.1186/s13014-014-0251-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-014-0251-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000469689", 
          "https://doi.org/10.1186/s13014-014-0251-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.procs.2016.09.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007236334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2012.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008143456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.10.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014557693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015007392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-015-1387-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019216192", 
          "https://doi.org/10.1007/s11517-015-1387-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2015.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023026092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029415949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2014.2377694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2009.2017629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.01.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083416221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093251828"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-04", 
    "datePublishedReg": "2018-02-04", 
    "description": "Segmenting abnormal areas in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common segmentation techniques used in these tasks, lack of the property of modeling the shape structure that the tumor presents, which leads to an inaccurate segmentation. In this paper, we propose a probabilistic framework in order to model the shape variations related to abnormal tissues relevant in brain tumor segmentation procedures. For this purpose the database of the Brain Tumor Image Segmentation Challenge (Brats) 2015 is used. We use a Probabilistic extension of the 3D morphable model to learn those tumor variations between patients. Then from the trained model, we perform a non-rigid matching to fit the deformed modeled tumor in the medical image. The experimental results show that by using Probabilistic morphable models, the non-rigid properties of the abnormal tissues can be learned and hence improve the segmentation task.", 
    "editor": [
      {
        "familyName": "Mendoza", 
        "givenName": "Marcelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Velast\u00edn", 
        "givenName": "Sergio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-75193-1_38", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-75192-4", 
        "978-3-319-75193-1"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "name": "3D Probabilistic Morphable Models for Brain Tumor Segmentation", 
    "pagination": "314-322", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-75193-1_38"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bc89b9ab9007bb7b27ea84f508ee2c9ed7547895786ec199702d214762f6532"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100810054"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-75193-1_38", 
      "https://app.dimensions.ai/details/publication/pub.1100810054"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-75193-1_38"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_38'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_38'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_38'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_38'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      23 PREDICATES      40 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-75193-1_38 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N47086ca2615949f18fb0ebf41b1c79ba
4 schema:citation sg:pub.10.1007/s11517-015-1387-3
5 sg:pub.10.1186/s13014-014-0251-1
6 https://doi.org/10.1016/j.cmpb.2012.12.006
7 https://doi.org/10.1016/j.compbiomed.2015.06.016
8 https://doi.org/10.1016/j.compeleceng.2015.02.007
9 https://doi.org/10.1016/j.eswa.2017.01.036
10 https://doi.org/10.1016/j.ins.2011.10.011
11 https://doi.org/10.1016/j.mri.2013.05.002
12 https://doi.org/10.1016/j.procs.2016.09.407
13 https://doi.org/10.1109/cvpr.2007.383165
14 https://doi.org/10.1109/tmi.2014.2377694
15 https://doi.org/10.1109/tmm.2009.2017629
16 https://doi.org/10.1111/1467-9868.00196
17 https://doi.org/10.2196/jmir.2930
18 schema:datePublished 2018-02-04
19 schema:datePublishedReg 2018-02-04
20 schema:description Segmenting abnormal areas in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common segmentation techniques used in these tasks, lack of the property of modeling the shape structure that the tumor presents, which leads to an inaccurate segmentation. In this paper, we propose a probabilistic framework in order to model the shape variations related to abnormal tissues relevant in brain tumor segmentation procedures. For this purpose the database of the Brain Tumor Image Segmentation Challenge (Brats) 2015 is used. We use a Probabilistic extension of the 3D morphable model to learn those tumor variations between patients. Then from the trained model, we perform a non-rigid matching to fit the deformed modeled tumor in the medical image. The experimental results show that by using Probabilistic morphable models, the non-rigid properties of the abnormal tissues can be learned and hence improve the segmentation task.
21 schema:editor N45514030fd4044f7a0c41a051473dac6
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N19c19aa8f60f4317af990fdf1c4f3ff7
26 schema:name 3D Probabilistic Morphable Models for Brain Tumor Segmentation
27 schema:pagination 314-322
28 schema:productId N2713c5ab401743429d523a2c45318177
29 N3cbb9f1518ad4ecdb1163c7dcb976e78
30 N6a1af3868a0746fd9aab8bbf356b0881
31 schema:publisher Ne393f89f0cfc41dc9b33fbcf8ff50c81
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100810054
33 https://doi.org/10.1007/978-3-319-75193-1_38
34 schema:sdDatePublished 2019-04-16T04:59
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5371672a88e9437f9a69adf63321e4ac
37 schema:url https://link.springer.com/10.1007%2F978-3-319-75193-1_38
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N19c19aa8f60f4317af990fdf1c4f3ff7 schema:isbn 978-3-319-75192-4
42 978-3-319-75193-1
43 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
44 rdf:type schema:Book
45 N2713c5ab401743429d523a2c45318177 schema:name dimensions_id
46 schema:value pub.1100810054
47 rdf:type schema:PropertyValue
48 N3318cfb1910a4c019058cc1e4f0c82fb schema:familyName Mendoza
49 schema:givenName Marcelo
50 rdf:type schema:Person
51 N3cbb9f1518ad4ecdb1163c7dcb976e78 schema:name doi
52 schema:value 10.1007/978-3-319-75193-1_38
53 rdf:type schema:PropertyValue
54 N4169a4b2f09940c39476526f1e004b0d rdf:first sg:person.014220534313.29
55 rdf:rest Naa8e88c3562f4b629281f8600ab847c3
56 N45514030fd4044f7a0c41a051473dac6 rdf:first N3318cfb1910a4c019058cc1e4f0c82fb
57 rdf:rest Nfe8ac493fa0e4a1f939beb77fa4765f0
58 N47086ca2615949f18fb0ebf41b1c79ba rdf:first sg:person.07703364717.35
59 rdf:rest N4169a4b2f09940c39476526f1e004b0d
60 N4d89502ea65d43f79c477ac9218de62e schema:familyName Velastín
61 schema:givenName Sergio
62 rdf:type schema:Person
63 N5371672a88e9437f9a69adf63321e4ac schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N6a1af3868a0746fd9aab8bbf356b0881 schema:name readcube_id
66 schema:value 4bc89b9ab9007bb7b27ea84f508ee2c9ed7547895786ec199702d214762f6532
67 rdf:type schema:PropertyValue
68 Naa8e88c3562f4b629281f8600ab847c3 rdf:first sg:person.012757230130.96
69 rdf:rest Nbfe7799ef87a4594912a318d57b39a18
70 Nbfe7799ef87a4594912a318d57b39a18 rdf:first sg:person.013562027545.25
71 rdf:rest rdf:nil
72 Ne393f89f0cfc41dc9b33fbcf8ff50c81 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 Nfe8ac493fa0e4a1f939beb77fa4765f0 rdf:first N4d89502ea65d43f79c477ac9218de62e
76 rdf:rest rdf:nil
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:person.012757230130.96 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
84 schema:familyName Álvarez
85 schema:givenName Andres M.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96
87 rdf:type schema:Person
88 sg:person.013562027545.25 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
89 schema:familyName Orozco
90 schema:givenName Álvaro A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25
92 rdf:type schema:Person
93 sg:person.014220534313.29 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
94 schema:familyName García
95 schema:givenName Hernán F.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220534313.29
97 rdf:type schema:Person
98 sg:person.07703364717.35 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
99 schema:familyName Jimenez
100 schema:givenName David A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703364717.35
102 rdf:type schema:Person
103 sg:pub.10.1007/s11517-015-1387-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019216192
104 https://doi.org/10.1007/s11517-015-1387-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1186/s13014-014-0251-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000469689
107 https://doi.org/10.1186/s13014-014-0251-1
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cmpb.2012.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008143456
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.compbiomed.2015.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023026092
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.compeleceng.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029415949
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.eswa.2017.01.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083416221
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ins.2011.10.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014557693
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.mri.2013.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000180446
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.procs.2016.09.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007236334
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.2007.383165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093251828
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tmi.2014.2377694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696449
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tmm.2009.2017629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697628
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/1467-9868.00196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015007392
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2196/jmir.2930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000212247
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
134 schema:name Grupo de Investigación en Automática, Universidad Tecnológica de Pereira, Pereira, Colombia
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...