Non-stationary Multi-output Gaussian Processes for Enhancing Resolution over Diffusion Tensor Fields View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-02-04

AUTHORS

Jhon F. Cuellar-Fierro , Hernán Darío Vargas-Cardona , Mauricio A. Álvarez , Andrés M. Álvarez , Álvaro A. Orozco

ABSTRACT

Diffusion magnetic resonance imaging (dMRI) is an advanced technique derived from magnetic resonance imaging (MRI) that allows the study of internal structures in biological tissue. Due to acquisition protocols and hardware limitations of the equipment employed to obtain the data, the spatial resolution of the images is often low. This inherent lack in dMRI is a considerable difficulty because clinical applications are affected. The scientific community has proposed several methodologies for enhancing the spatial resolution of dMRI data, based on interpolation of diffusion tensors fields. However, most of the methods have considerable drawbacks when they interpolate strong transitions, such as crossing fibers. Also, relevant clinical information from tensor fields is modified when interpolation is performed. In this work, we propose a probabilistic methodology for interpolation of diffusion tensors fields using multi-output Gaussian processes with non-stationary kernel function. First, each tensor is decomposed in shape and orientation features. Then, the model interpolates the features jointly. Results show that proposed approach outperforms state-of-the-art methods regarding resolution enhancement accuracy on synthetic and real data, when we evaluate interpolation quality with Frobenius and Riemann metrics. Also, the proposed method demonstrates an adequate characterization of both stationary and non-stationary fields, contrary to previous approaches where performance is seriously reduced when complex fields are interpolated. More... »

PAGES

168-176

References to SciGraph publications

Book

TITLE

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

ISBN

978-3-319-75192-4
978-3-319-75193-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_21

DOI

http://dx.doi.org/10.1007/978-3-319-75193-1_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100810036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatic Researh Group, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuellar-Fierro", 
        "givenName": "Jhon F.", 
        "id": "sg:person.014757152434.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757152434.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatic Researh Group, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vargas-Cardona", 
        "givenName": "Hern\u00e1n Dar\u00edo", 
        "id": "sg:person.01321275514.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321275514.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez", 
        "givenName": "Mauricio A.", 
        "id": "sg:person.01212074571.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212074571.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatic Researh Group, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "\u00c1lvarez", 
        "givenName": "Andr\u00e9s M.", 
        "id": "sg:person.012757230130.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technological University of Pereira", 
          "id": "https://www.grid.ac/institutes/grid.412256.6", 
          "name": [
            "Automatic Researh Group, Universidad Tecnol\u00f3gica de Pereira, Pereira, Colombia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orozco", 
        "givenName": "\u00c1lvaro A.", 
        "id": "sg:person.013562027545.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.12659/msm.882891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018888302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40760-4_60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029764974", 
          "https://doi.org/10.1007/978-3-642-40760-4_60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038097151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2011.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040892220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051149571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053241342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2004.831218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/2200000036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2010.5490256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078398937"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-02-04", 
    "datePublishedReg": "2018-02-04", 
    "description": "Diffusion magnetic resonance imaging (dMRI) is an advanced technique derived from magnetic resonance imaging (MRI) that allows the study of internal structures in biological tissue. Due to acquisition protocols and hardware limitations of the equipment employed to obtain the data, the spatial resolution of the images is often low. This inherent lack in dMRI is a considerable difficulty because clinical applications are affected. The scientific community has proposed several methodologies for enhancing the spatial resolution of dMRI data, based on interpolation of diffusion tensors fields. However, most of the methods have considerable drawbacks when they interpolate strong transitions, such as crossing fibers. Also, relevant clinical information from tensor fields is modified when interpolation is performed. In this work, we propose a probabilistic methodology for interpolation of diffusion tensors fields using multi-output Gaussian processes with non-stationary kernel function. First, each tensor is decomposed in shape and orientation features. Then, the model interpolates the features jointly. Results show that proposed approach outperforms state-of-the-art methods regarding resolution enhancement accuracy on synthetic and real data, when we evaluate interpolation quality with Frobenius and Riemann metrics. Also, the proposed method demonstrates an adequate characterization of both stationary and non-stationary fields, contrary to previous approaches where performance is seriously reduced when complex fields are interpolated.", 
    "editor": [
      {
        "familyName": "Mendoza", 
        "givenName": "Marcelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Velast\u00edn", 
        "givenName": "Sergio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-75193-1_21", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-75192-4", 
        "978-3-319-75193-1"
      ], 
      "name": "Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications", 
      "type": "Book"
    }, 
    "name": "Non-stationary Multi-output Gaussian Processes for Enhancing Resolution over Diffusion Tensor Fields", 
    "pagination": "168-176", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-75193-1_21"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fd25634e00a464982cf8d636677d4b2b9ea0c0bd8cd88e996c558a33d2acb00c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100810036"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-75193-1_21", 
      "https://app.dimensions.ai/details/publication/pub.1100810036"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T04:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-75193-1_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-75193-1_21'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      35 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-75193-1_21 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf31219b2a6eb4db9b216793604fa760e
4 schema:citation sg:pub.10.1007/978-3-642-40760-4_60
5 https://doi.org/10.1002/jmri.1076
6 https://doi.org/10.1002/mrm.20334
7 https://doi.org/10.1002/mrm.20965
8 https://doi.org/10.1016/j.media.2011.11.003
9 https://doi.org/10.1109/isbi.2010.5490256
10 https://doi.org/10.1109/tmi.2004.831218
11 https://doi.org/10.12659/msm.882891
12 https://doi.org/10.1561/2200000036
13 schema:datePublished 2018-02-04
14 schema:datePublishedReg 2018-02-04
15 schema:description Diffusion magnetic resonance imaging (dMRI) is an advanced technique derived from magnetic resonance imaging (MRI) that allows the study of internal structures in biological tissue. Due to acquisition protocols and hardware limitations of the equipment employed to obtain the data, the spatial resolution of the images is often low. This inherent lack in dMRI is a considerable difficulty because clinical applications are affected. The scientific community has proposed several methodologies for enhancing the spatial resolution of dMRI data, based on interpolation of diffusion tensors fields. However, most of the methods have considerable drawbacks when they interpolate strong transitions, such as crossing fibers. Also, relevant clinical information from tensor fields is modified when interpolation is performed. In this work, we propose a probabilistic methodology for interpolation of diffusion tensors fields using multi-output Gaussian processes with non-stationary kernel function. First, each tensor is decomposed in shape and orientation features. Then, the model interpolates the features jointly. Results show that proposed approach outperforms state-of-the-art methods regarding resolution enhancement accuracy on synthetic and real data, when we evaluate interpolation quality with Frobenius and Riemann metrics. Also, the proposed method demonstrates an adequate characterization of both stationary and non-stationary fields, contrary to previous approaches where performance is seriously reduced when complex fields are interpolated.
16 schema:editor N6ab36b39fdbc4782bcfaa82cdb0b5226
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N93ed81bcc2c844f2b2b1a87fa7d1ad3f
21 schema:name Non-stationary Multi-output Gaussian Processes for Enhancing Resolution over Diffusion Tensor Fields
22 schema:pagination 168-176
23 schema:productId N13c3cadef1f5448db11f21a7e1b24c1b
24 N75f3663dbc10463e82f12f6203260b85
25 Na98a3c9088e647439da5cc357eeb0f0e
26 schema:publisher N807cd60fd7f146b180ac2e85f6a6d81f
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100810036
28 https://doi.org/10.1007/978-3-319-75193-1_21
29 schema:sdDatePublished 2019-04-16T04:59
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Neeac9250418b4d43b9f9dc4b994dd07e
32 schema:url https://link.springer.com/10.1007%2F978-3-319-75193-1_21
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N13c3cadef1f5448db11f21a7e1b24c1b schema:name dimensions_id
37 schema:value pub.1100810036
38 rdf:type schema:PropertyValue
39 N202c73c1d8ab4c3d86ffd5a3b44134e5 rdf:first sg:person.012757230130.96
40 rdf:rest Nf8823d8be7974120996a63055729e35d
41 N6ab36b39fdbc4782bcfaa82cdb0b5226 rdf:first Na5e4275e938e4e86bba1bdd1fbf8baa3
42 rdf:rest Nc1224e0dd9b6448b93f398bddb221443
43 N75f3663dbc10463e82f12f6203260b85 schema:name readcube_id
44 schema:value fd25634e00a464982cf8d636677d4b2b9ea0c0bd8cd88e996c558a33d2acb00c
45 rdf:type schema:PropertyValue
46 N807cd60fd7f146b180ac2e85f6a6d81f schema:location Cham
47 schema:name Springer International Publishing
48 rdf:type schema:Organisation
49 N93ed81bcc2c844f2b2b1a87fa7d1ad3f schema:isbn 978-3-319-75192-4
50 978-3-319-75193-1
51 schema:name Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
52 rdf:type schema:Book
53 N9526e71ca7ef4b7284265466a910763f rdf:first sg:person.01321275514.14
54 rdf:rest Nb9bc3cb33c3c4132a3752c49f99373bf
55 Na5e4275e938e4e86bba1bdd1fbf8baa3 schema:familyName Mendoza
56 schema:givenName Marcelo
57 rdf:type schema:Person
58 Na98a3c9088e647439da5cc357eeb0f0e schema:name doi
59 schema:value 10.1007/978-3-319-75193-1_21
60 rdf:type schema:PropertyValue
61 Nb9bc3cb33c3c4132a3752c49f99373bf rdf:first sg:person.01212074571.75
62 rdf:rest N202c73c1d8ab4c3d86ffd5a3b44134e5
63 Nc1224e0dd9b6448b93f398bddb221443 rdf:first Ne588e7e9e3894485a9b73afabef9d7f5
64 rdf:rest rdf:nil
65 Ne588e7e9e3894485a9b73afabef9d7f5 schema:familyName Velastín
66 schema:givenName Sergio
67 rdf:type schema:Person
68 Neeac9250418b4d43b9f9dc4b994dd07e schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nf31219b2a6eb4db9b216793604fa760e rdf:first sg:person.014757152434.40
71 rdf:rest N9526e71ca7ef4b7284265466a910763f
72 Nf8823d8be7974120996a63055729e35d rdf:first sg:person.013562027545.25
73 rdf:rest rdf:nil
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
78 schema:name Other Physical Sciences
79 rdf:type schema:DefinedTerm
80 sg:person.01212074571.75 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
81 schema:familyName Álvarez
82 schema:givenName Mauricio A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212074571.75
84 rdf:type schema:Person
85 sg:person.012757230130.96 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
86 schema:familyName Álvarez
87 schema:givenName Andrés M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757230130.96
89 rdf:type schema:Person
90 sg:person.01321275514.14 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
91 schema:familyName Vargas-Cardona
92 schema:givenName Hernán Darío
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321275514.14
94 rdf:type schema:Person
95 sg:person.013562027545.25 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
96 schema:familyName Orozco
97 schema:givenName Álvaro A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562027545.25
99 rdf:type schema:Person
100 sg:person.014757152434.40 schema:affiliation https://www.grid.ac/institutes/grid.412256.6
101 schema:familyName Cuellar-Fierro
102 schema:givenName Jhon F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757152434.40
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-642-40760-4_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029764974
106 https://doi.org/10.1007/978-3-642-40760-4_60
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/jmri.1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053241342
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/mrm.20334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038097151
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/mrm.20965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051149571
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.media.2011.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040892220
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/isbi.2010.5490256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078398937
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/tmi.2004.831218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694613
119 rdf:type schema:CreativeWork
120 https://doi.org/10.12659/msm.882891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018888302
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1561/2200000036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001411
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
125 schema:name University of Sheffield, Sheffield, UK
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.412256.6 schema:alternateName Technological University of Pereira
128 schema:name Automatic Researh Group, Universidad Tecnológica de Pereira, Pereira, Colombia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...