Hidden Storage in Data Centers: Gaining Flexibility Through Cooling Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-01-25

AUTHORS

Robert Basmadjian , Yashar Ghiassi-Farrokhfal , Arun Vishwanath

ABSTRACT

Data centers are one of the biggest energy consumers in the ICT sector. Their cooling system accounts for almost half of the overall data center energy demand. Thus, the flexibility in shifting energy demand of the cooling systems in data centers could be a great asset for data center operators. The amount of flexibility and how it can be maximized are important yet open problems, due to the several stochastic processes involved. In this paper, we propose a novel methodology that allows data center operators to compute the flexibility of the cooling system by modeling it as an Energy Storage System (ESS). To enable such a mapping, the temperature set-points of the cooling systems must be expressed by a recursive formulation. To this end, based on thermodynamic concepts, in this paper we derive a recursive formulation for the temperature of the cooling systems and verify it empirically through a real-world data set. We then sketch (as our future work) how this mapping can be used to compute the flexibility of the cooling systems which can be efficiently leveraged during demand-response periods. More... »

PAGES

68-82

Book

TITLE

Measurement, Modelling and Evaluation of Computing Systems

ISBN

978-3-319-74946-4
978-3-319-74947-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-74947-1_5

DOI

http://dx.doi.org/10.1007/978-3-319-74947-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100625022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Passau", 
          "id": "https://www.grid.ac/institutes/grid.11046.32", 
          "name": [
            "University of Passau, Innstrasse 43, Passau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basmadjian", 
        "givenName": "Robert", 
        "id": "sg:person.013023642265.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023642265.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Rotterdam", 
          "id": "https://www.grid.ac/institutes/grid.6906.9", 
          "name": [
            "Erasmus University Rotterdam, Burgemeester Oudlaan, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghiassi-Farrokhfal", 
        "givenName": "Yashar", 
        "id": "sg:person.015420674323.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420674323.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Australia", 
          "id": "https://www.grid.ac/institutes/grid.481553.e", 
          "name": [
            "IBM Research, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vishwanath", 
        "givenName": "Arun", 
        "id": "sg:person.014527277703.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527277703.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1496091.1496103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006694599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041274546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1065944.1065967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045820999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2254756.2254780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046130443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsac.2016.2525599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061318866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mspec.2009.4768855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061429457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsg.2014.2330832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061790223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tste.2014.2359795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061806770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2165214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1182769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062461298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3077839.3077847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096915247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2254756.2254778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098871657"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-25", 
    "datePublishedReg": "2018-01-25", 
    "description": "Data centers are one of the biggest energy consumers in the ICT sector. Their cooling system accounts for almost half of the overall data center energy demand. Thus, the flexibility in shifting energy demand of the cooling systems in data centers could be a great asset for data center operators. The amount of flexibility and how it can be maximized are important yet open problems, due to the several stochastic processes involved. In this paper, we propose a novel methodology that allows data center operators to compute the flexibility of the cooling system by modeling it as an Energy Storage System (ESS). To enable such a mapping, the temperature set-points of the cooling systems must be expressed by a recursive formulation. To this end, based on thermodynamic concepts, in this paper we derive a recursive formulation for the temperature of the cooling systems and verify it empirically through a real-world data set. We then sketch (as our future work) how this mapping can be used to compute the flexibility of the cooling systems which can be efficiently leveraged during demand-response periods.", 
    "editor": [
      {
        "familyName": "German", 
        "givenName": "Reinhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Hielscher", 
        "givenName": "Kai-Steffen", 
        "type": "Person"
      }, 
      {
        "familyName": "Krieger", 
        "givenName": "Udo R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-74947-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-74946-4", 
        "978-3-319-74947-1"
      ], 
      "name": "Measurement, Modelling and Evaluation of Computing Systems", 
      "type": "Book"
    }, 
    "name": "Hidden Storage in Data Centers: Gaining Flexibility Through Cooling Systems", 
    "pagination": "68-82", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-74947-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28c851c422de75e348935d274a7419956fb3c88e550d4baf97eb86b71203b78e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100625022"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-74947-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1100625022"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-74947-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-74947-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-74947-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-74947-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-74947-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      38 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-74947-1_5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfc5f44b885a1435888b40ade89c6ffad
4 schema:citation https://doi.org/10.1016/j.rser.2012.09.019
5 https://doi.org/10.1109/jsac.2016.2525599
6 https://doi.org/10.1109/mspec.2009.4768855
7 https://doi.org/10.1109/tsg.2014.2330832
8 https://doi.org/10.1109/tste.2014.2359795
9 https://doi.org/10.1115/1.2165214
10 https://doi.org/10.1126/science.1182769
11 https://doi.org/10.1145/1065944.1065967
12 https://doi.org/10.1145/1496091.1496103
13 https://doi.org/10.1145/2254756.2254778
14 https://doi.org/10.1145/2254756.2254780
15 https://doi.org/10.1145/3077839.3077847
16 schema:datePublished 2018-01-25
17 schema:datePublishedReg 2018-01-25
18 schema:description Data centers are one of the biggest energy consumers in the ICT sector. Their cooling system accounts for almost half of the overall data center energy demand. Thus, the flexibility in shifting energy demand of the cooling systems in data centers could be a great asset for data center operators. The amount of flexibility and how it can be maximized are important yet open problems, due to the several stochastic processes involved. In this paper, we propose a novel methodology that allows data center operators to compute the flexibility of the cooling system by modeling it as an Energy Storage System (ESS). To enable such a mapping, the temperature set-points of the cooling systems must be expressed by a recursive formulation. To this end, based on thermodynamic concepts, in this paper we derive a recursive formulation for the temperature of the cooling systems and verify it empirically through a real-world data set. We then sketch (as our future work) how this mapping can be used to compute the flexibility of the cooling systems which can be efficiently leveraged during demand-response periods.
19 schema:editor N251e8a89e3fa4b06bdad17b2e1696634
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N889b8cd616304307b40d949604718018
24 schema:name Hidden Storage in Data Centers: Gaining Flexibility Through Cooling Systems
25 schema:pagination 68-82
26 schema:productId N525719664be44021adfc921ef84b09f6
27 N8c61fe39a66142acbf34132a11852ac4
28 Nce4a7559050849b3a48660b4269c87fd
29 schema:publisher N655717d9487048f3a5d16272d818ce6c
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100625022
31 https://doi.org/10.1007/978-3-319-74947-1_5
32 schema:sdDatePublished 2019-04-16T05:01
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N3b65fb66b82f42a2aab8834033cc8701
35 schema:url https://link.springer.com/10.1007%2F978-3-319-74947-1_5
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N234933e755d149da85738a1aaab36ea8 rdf:first Ncb47020b02474584a4bea3c4ab4a6190
40 rdf:rest N6d7ddb43b8c54df6964b65fd992025fe
41 N251e8a89e3fa4b06bdad17b2e1696634 rdf:first N7a7b93ec736149778ec9baacf4c4eb42
42 rdf:rest N234933e755d149da85738a1aaab36ea8
43 N3b65fb66b82f42a2aab8834033cc8701 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N525719664be44021adfc921ef84b09f6 schema:name doi
46 schema:value 10.1007/978-3-319-74947-1_5
47 rdf:type schema:PropertyValue
48 N655717d9487048f3a5d16272d818ce6c schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 N6d7ddb43b8c54df6964b65fd992025fe rdf:first Nb6b536e8f5c54536a7857db07f113ee0
52 rdf:rest rdf:nil
53 N7a7b93ec736149778ec9baacf4c4eb42 schema:familyName German
54 schema:givenName Reinhard
55 rdf:type schema:Person
56 N7f9b8be3105e4b328ee8f65b6ec102a8 rdf:first sg:person.015420674323.18
57 rdf:rest Nb1aab9663c4640ef906d1cc82d86a609
58 N889b8cd616304307b40d949604718018 schema:isbn 978-3-319-74946-4
59 978-3-319-74947-1
60 schema:name Measurement, Modelling and Evaluation of Computing Systems
61 rdf:type schema:Book
62 N8c61fe39a66142acbf34132a11852ac4 schema:name readcube_id
63 schema:value 28c851c422de75e348935d274a7419956fb3c88e550d4baf97eb86b71203b78e
64 rdf:type schema:PropertyValue
65 Nb1aab9663c4640ef906d1cc82d86a609 rdf:first sg:person.014527277703.14
66 rdf:rest rdf:nil
67 Nb6b536e8f5c54536a7857db07f113ee0 schema:familyName Krieger
68 schema:givenName Udo R.
69 rdf:type schema:Person
70 Ncb47020b02474584a4bea3c4ab4a6190 schema:familyName Hielscher
71 schema:givenName Kai-Steffen
72 rdf:type schema:Person
73 Nce4a7559050849b3a48660b4269c87fd schema:name dimensions_id
74 schema:value pub.1100625022
75 rdf:type schema:PropertyValue
76 Nfc5f44b885a1435888b40ade89c6ffad rdf:first sg:person.013023642265.37
77 rdf:rest N7f9b8be3105e4b328ee8f65b6ec102a8
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:person.013023642265.37 schema:affiliation https://www.grid.ac/institutes/grid.11046.32
85 schema:familyName Basmadjian
86 schema:givenName Robert
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023642265.37
88 rdf:type schema:Person
89 sg:person.014527277703.14 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
90 schema:familyName Vishwanath
91 schema:givenName Arun
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527277703.14
93 rdf:type schema:Person
94 sg:person.015420674323.18 schema:affiliation https://www.grid.ac/institutes/grid.6906.9
95 schema:familyName Ghiassi-Farrokhfal
96 schema:givenName Yashar
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420674323.18
98 rdf:type schema:Person
99 https://doi.org/10.1016/j.rser.2012.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041274546
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/jsac.2016.2525599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061318866
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/mspec.2009.4768855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061429457
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tsg.2014.2330832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061790223
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tste.2014.2359795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061806770
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1115/1.2165214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077468
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1126/science.1182769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461298
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1145/1065944.1065967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045820999
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1496091.1496103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006694599
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/2254756.2254778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098871657
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/2254756.2254780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046130443
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/3077839.3077847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096915247
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.11046.32 schema:alternateName University of Passau
124 schema:name University of Passau, Innstrasse 43, Passau, Germany
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.481553.e schema:alternateName IBM Research - Australia
127 schema:name IBM Research, Melbourne, Australia
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.6906.9 schema:alternateName Erasmus University Rotterdam
130 schema:name Erasmus University Rotterdam, Burgemeester Oudlaan, Rotterdam, The Netherlands
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...