Multi-objective Genetic Algorithm for Interior Lighting Design View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-12-21

AUTHORS

Alice Plebe , Mario Pavone

ABSTRACT

This paper proposes a novel system to help in the design of interior lighting. It is based on multi-objective optimization of the key criteria involved in lighting design: the respect of a given target level of illuminance, uniformity of lighting, and electrical energy saving. The proposed solution integrates the 3D graphic software Blender, used to reproduce the architectural space and to simulate the effect of illumination, and the genetic algorithm NSGA-II. This solution offers advantages in design flexibility over previous related works. More... »

PAGES

222-233

Book

TITLE

Machine Learning, Optimization, and Big Data

ISBN

978-3-319-72925-1
978-3-319-72926-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72926-8_19

DOI

http://dx.doi.org/10.1007/978-3-319-72926-8_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099746626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plebe", 
        "givenName": "Alice", 
        "id": "sg:person.013623104020.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013623104020.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pavone", 
        "givenName": "Mario", 
        "id": "sg:person.07350620665.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-12-21", 
    "datePublishedReg": "2017-12-21", 
    "description": "This paper proposes a novel system to help in the design of interior lighting. It is based on multi-objective optimization of the key criteria involved in lighting design: the respect of a given target level of illuminance, uniformity of lighting, and electrical energy saving. The proposed solution integrates the 3D graphic software Blender, used to reproduce the architectural space and to simulate the effect of illumination, and the genetic algorithm NSGA-II. This solution offers advantages in design flexibility over previous related works.", 
    "editor": [
      {
        "familyName": "Nicosia", 
        "givenName": "Giuseppe", 
        "type": "Person"
      }, 
      {
        "familyName": "Pardalos", 
        "givenName": "Panos", 
        "type": "Person"
      }, 
      {
        "familyName": "Giuffrida", 
        "givenName": "Giovanni", 
        "type": "Person"
      }, 
      {
        "familyName": "Umeton", 
        "givenName": "Renato", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72926-8_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72925-1", 
        "978-3-319-72926-8"
      ], 
      "name": "Machine Learning, Optimization, and Big Data", 
      "type": "Book"
    }, 
    "keywords": [
      "interior lighting design", 
      "uniformity of lighting", 
      "electrical energy savings", 
      "architectural space", 
      "lighting design", 
      "interior lighting", 
      "energy savings", 
      "software Blender", 
      "key criteria", 
      "multi-objective optimization", 
      "lighting", 
      "genetic algorithm NSGA-II", 
      "multi-objective genetic algorithm", 
      "design", 
      "algorithm NSGA-II", 
      "design flexibility", 
      "illuminance", 
      "previous related works", 
      "NSGA-II", 
      "savings", 
      "space", 
      "related work", 
      "genetic algorithm", 
      "paper", 
      "solution", 
      "novel system", 
      "flexibility", 
      "criteria", 
      "target level", 
      "optimization", 
      "work", 
      "system", 
      "effect of illumination", 
      "advantages", 
      "respect", 
      "illumination", 
      "levels", 
      "uniformity", 
      "effect", 
      "blender", 
      "algorithm"
    ], 
    "name": "Multi-objective Genetic Algorithm for Interior Lighting Design", 
    "pagination": "222-233", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099746626"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72926-8_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72926-8_19", 
      "https://app.dimensions.ai/details/publication/pub.1099746626"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_351.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-72926-8_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72926-8_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72926-8_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72926-8_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72926-8_19'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72926-8_19 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N3a2b98d9605c419eaf7b6d2abfed9137
4 schema:datePublished 2017-12-21
5 schema:datePublishedReg 2017-12-21
6 schema:description This paper proposes a novel system to help in the design of interior lighting. It is based on multi-objective optimization of the key criteria involved in lighting design: the respect of a given target level of illuminance, uniformity of lighting, and electrical energy saving. The proposed solution integrates the 3D graphic software Blender, used to reproduce the architectural space and to simulate the effect of illumination, and the genetic algorithm NSGA-II. This solution offers advantages in design flexibility over previous related works.
7 schema:editor N085b408e19b047aabace8c6031e330fa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nd7fffe775f89429a925d4d7cc99a9dc7
12 schema:keywords NSGA-II
13 advantages
14 algorithm
15 algorithm NSGA-II
16 architectural space
17 blender
18 criteria
19 design
20 design flexibility
21 effect
22 effect of illumination
23 electrical energy savings
24 energy savings
25 flexibility
26 genetic algorithm
27 genetic algorithm NSGA-II
28 illuminance
29 illumination
30 interior lighting
31 interior lighting design
32 key criteria
33 levels
34 lighting
35 lighting design
36 multi-objective genetic algorithm
37 multi-objective optimization
38 novel system
39 optimization
40 paper
41 previous related works
42 related work
43 respect
44 savings
45 software Blender
46 solution
47 space
48 system
49 target level
50 uniformity
51 uniformity of lighting
52 work
53 schema:name Multi-objective Genetic Algorithm for Interior Lighting Design
54 schema:pagination 222-233
55 schema:productId N8dd5bb32f6664c269e08fcd4e02458c0
56 Nc4d06b15abae4ca6b1e54d7ff389f176
57 schema:publisher Nb4c93dfccada48e7af9d24c19147075c
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099746626
59 https://doi.org/10.1007/978-3-319-72926-8_19
60 schema:sdDatePublished 2022-05-20T07:46
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N8e227886341649ed952d9ab6f63658e6
63 schema:url https://doi.org/10.1007/978-3-319-72926-8_19
64 sgo:license sg:explorer/license/
65 sgo:sdDataset chapters
66 rdf:type schema:Chapter
67 N085b408e19b047aabace8c6031e330fa rdf:first Nf179c801b935475d963317c4b03ed3de
68 rdf:rest N775649979d6f4a52890e0bae9cc7cf4f
69 N30aad25c09794cf68c279a3bc697b7e2 rdf:first Nc5b9d195f6a5449eafed78815ea4f1fe
70 rdf:rest N39445fa8d4554ecf98e119b0e4881cfd
71 N33232b49a7304f3a8b8ec4b98583c099 schema:familyName Pardalos
72 schema:givenName Panos
73 rdf:type schema:Person
74 N39445fa8d4554ecf98e119b0e4881cfd rdf:first Nba690bb37d14419b8c30c55fea040f79
75 rdf:rest rdf:nil
76 N3a2b98d9605c419eaf7b6d2abfed9137 rdf:first sg:person.013623104020.31
77 rdf:rest N97caa241d3c845a1b44722d503cfd38b
78 N775649979d6f4a52890e0bae9cc7cf4f rdf:first N33232b49a7304f3a8b8ec4b98583c099
79 rdf:rest N30aad25c09794cf68c279a3bc697b7e2
80 N8dd5bb32f6664c269e08fcd4e02458c0 schema:name dimensions_id
81 schema:value pub.1099746626
82 rdf:type schema:PropertyValue
83 N8e227886341649ed952d9ab6f63658e6 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N97caa241d3c845a1b44722d503cfd38b rdf:first sg:person.07350620665.82
86 rdf:rest rdf:nil
87 Nb4c93dfccada48e7af9d24c19147075c schema:name Springer Nature
88 rdf:type schema:Organisation
89 Nba690bb37d14419b8c30c55fea040f79 schema:familyName Umeton
90 schema:givenName Renato
91 rdf:type schema:Person
92 Nc4d06b15abae4ca6b1e54d7ff389f176 schema:name doi
93 schema:value 10.1007/978-3-319-72926-8_19
94 rdf:type schema:PropertyValue
95 Nc5b9d195f6a5449eafed78815ea4f1fe schema:familyName Giuffrida
96 schema:givenName Giovanni
97 rdf:type schema:Person
98 Nd7fffe775f89429a925d4d7cc99a9dc7 schema:isbn 978-3-319-72925-1
99 978-3-319-72926-8
100 schema:name Machine Learning, Optimization, and Big Data
101 rdf:type schema:Book
102 Nf179c801b935475d963317c4b03ed3de schema:familyName Nicosia
103 schema:givenName Giuseppe
104 rdf:type schema:Person
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
109 schema:name Numerical and Computational Mathematics
110 rdf:type schema:DefinedTerm
111 sg:person.013623104020.31 schema:affiliation grid-institutes:grid.8158.4
112 schema:familyName Plebe
113 schema:givenName Alice
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013623104020.31
115 rdf:type schema:Person
116 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.8158.4
117 schema:familyName Pavone
118 schema:givenName Mario
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
120 rdf:type schema:Person
121 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
122 schema:name Department of Mathematics and Computer Science, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...