Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of an Aluminum Alloy Nanocomposite View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018

AUTHORS

Mohammad Alipour , Reza Eslami Farsani , Yu. A. Abuzin

ABSTRACT

Microstructure and wear behavior of aluminum alloy AA7068/graphene nanoplate composites produced by ball milling, stir casting and ultrasonic waves have been investigated. The microstructural studies of the alloy revealed that graphene nanoplatelet addition reduces the grain size, but adding higher graphene nanoplatelet content (1 wt% graphene nanoplatelet) does not change the grain size considerably. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear behavior were obtained with the addition of graphene nanoplatelet combined with T6 heat treatment. At higher graphene nanoplatelet contents, the presence of graphene agglomerate on grain boundaries was found to be the favored path for crack growth. The optimum amount of nanoparticles is 0.5 wt% graphene nanoplatelet. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of 7068 aluminum alloy reinforced with 0.5 wt% graphene nanoplatelet to the dry sliding wear. More... »

PAGES

233-246

Book

TITLE

Metal-Matrix Composites Innovations, Advances and Applications

ISBN

978-3-319-72852-0
978-3-319-72853-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_16

DOI

http://dx.doi.org/10.1007/978-3-319-72853-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100457518


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "K. N. Toosi University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alipour", 
        "givenName": "Mohammad", 
        "id": "sg:person.014002164760.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002164760.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "K. N. Toosi University of Technology"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farsani", 
        "givenName": "Reza Eslami", 
        "id": "sg:person.016053357264.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016053357264.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National University of Science and Technology (MISIS)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abuzin", 
        "givenName": "Yu. A.", 
        "id": "sg:person.010757235650.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757235650.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matchar.2012.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000500930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2013.11.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004910472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2015.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005229479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008912812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013910817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(16)64349-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015456140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016785906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.03.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021303630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.10.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023391896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118062173.ch106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031205621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118062142.ch38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032570247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cemconres.2015.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043022061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118062173.ch105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046615323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acme.2016.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049214200"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018", 
    "datePublishedReg": "2018-01-01", 
    "description": "Microstructure and wear behavior of aluminum alloy AA7068/graphene nanoplate composites produced by ball milling, stir casting and ultrasonic waves have been investigated. The microstructural studies of the alloy revealed that graphene nanoplatelet addition reduces the grain size, but adding higher graphene nanoplatelet content (1 wt% graphene nanoplatelet) does not change the grain size considerably. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear behavior were obtained with the addition of graphene nanoplatelet combined with T6 heat treatment. At higher graphene nanoplatelet contents, the presence of graphene agglomerate on grain boundaries was found to be the favored path for crack growth. The optimum amount of nanoparticles is 0.5 wt% graphene nanoplatelet. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of 7068 aluminum alloy reinforced with 0.5 wt% graphene nanoplatelet to the dry sliding wear.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Yuzheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Harrigan,", 
        "givenName": "William C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72853-7_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72852-0", 
        "978-3-319-72853-7"
      ], 
      "name": "Metal-Matrix Composites Innovations, Advances and Applications", 
      "type": "Book"
    }, 
    "name": "Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of an Aluminum Alloy Nanocomposite", 
    "pagination": "233-246", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72853-7_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97b52767f789c3816082616045f6786e794398f9650239786bf84a23c9cfd7e1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100457518"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72853-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1100457518"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000280.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-72853-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72853-7_16 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N09ac9f1405c24531b337944dafb78f95
4 schema:citation https://doi.org/10.1002/9781118062142.ch38
5 https://doi.org/10.1002/9781118062173.ch105
6 https://doi.org/10.1002/9781118062173.ch106
7 https://doi.org/10.1016/j.acme.2016.12.006
8 https://doi.org/10.1016/j.carbon.2013.11.054
9 https://doi.org/10.1016/j.cemconres.2015.06.003
10 https://doi.org/10.1016/j.matchar.2012.05.015
11 https://doi.org/10.1016/j.matchar.2015.06.013
12 https://doi.org/10.1016/j.matdes.2011.03.044
13 https://doi.org/10.1016/j.matdes.2012.02.008
14 https://doi.org/10.1016/j.matdes.2012.10.058
15 https://doi.org/10.1016/j.matdes.2013.07.013
16 https://doi.org/10.1016/j.matdes.2016.01.117
17 https://doi.org/10.1016/j.msea.2011.02.026
18 https://doi.org/10.1016/s1003-6326(16)64349-2
19 schema:datePublished 2018
20 schema:datePublishedReg 2018-01-01
21 schema:description Microstructure and wear behavior of aluminum alloy AA7068/graphene nanoplate composites produced by ball milling, stir casting and ultrasonic waves have been investigated. The microstructural studies of the alloy revealed that graphene nanoplatelet addition reduces the grain size, but adding higher graphene nanoplatelet content (1 wt% graphene nanoplatelet) does not change the grain size considerably. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear behavior were obtained with the addition of graphene nanoplatelet combined with T6 heat treatment. At higher graphene nanoplatelet contents, the presence of graphene agglomerate on grain boundaries was found to be the favored path for crack growth. The optimum amount of nanoparticles is 0.5 wt% graphene nanoplatelet. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of 7068 aluminum alloy reinforced with 0.5 wt% graphene nanoplatelet to the dry sliding wear.
22 schema:editor N2949705d153b4f06ad07989351b26dee
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N59aa037bd88c4caba24a456615403acb
27 schema:name Influence of Graphene Nanoplatelet Reinforcements on Microstructural Development and Wear Behavior of an Aluminum Alloy Nanocomposite
28 schema:pagination 233-246
29 schema:productId N39e235f92991437ab0dc1b1aebb2bebc
30 N832ce70c69534c23a768132533397c89
31 Nafbb161cd305470e912828586d97fdc1
32 schema:publisher Nc1077ed1ddfc4d8da185354bb34b13d2
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100457518
34 https://doi.org/10.1007/978-3-319-72853-7_16
35 schema:sdDatePublished 2019-04-15T20:09
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nadba7b37b8144968ad76b0dd02303026
38 schema:url http://link.springer.com/10.1007/978-3-319-72853-7_16
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N09ac9f1405c24531b337944dafb78f95 rdf:first sg:person.014002164760.34
43 rdf:rest N9e13c7e4c9574fd198bcbb9622e51376
44 N276671b294c1431d9a0a7777498b5979 schema:familyName Zhang
45 schema:givenName Yuzheng
46 rdf:type schema:Person
47 N2949705d153b4f06ad07989351b26dee rdf:first Na12bbb3e6dd4435f960c320c5d3c715b
48 rdf:rest N891a718105364e3184ca4da13036518d
49 N39e235f92991437ab0dc1b1aebb2bebc schema:name dimensions_id
50 schema:value pub.1100457518
51 rdf:type schema:PropertyValue
52 N451a54b721aa414fbc23eb427fd9b269 schema:name National University of Science and Technology (MISIS)
53 rdf:type schema:Organization
54 N57ccb0863a9049d0934b50bc62117171 rdf:first Ne33b2291ba6c4786bf22d54d39435e95
55 rdf:rest rdf:nil
56 N59aa037bd88c4caba24a456615403acb schema:isbn 978-3-319-72852-0
57 978-3-319-72853-7
58 schema:name Metal-Matrix Composites Innovations, Advances and Applications
59 rdf:type schema:Book
60 N691ce14cef834943a54db8ad411ca97e schema:name K. N. Toosi University of Technology
61 rdf:type schema:Organization
62 N832ce70c69534c23a768132533397c89 schema:name doi
63 schema:value 10.1007/978-3-319-72853-7_16
64 rdf:type schema:PropertyValue
65 N891a718105364e3184ca4da13036518d rdf:first N276671b294c1431d9a0a7777498b5979
66 rdf:rest N57ccb0863a9049d0934b50bc62117171
67 N9e13c7e4c9574fd198bcbb9622e51376 rdf:first sg:person.016053357264.22
68 rdf:rest Ne8dc604cfb4144a38a5a8e57e1bad531
69 Na12bbb3e6dd4435f960c320c5d3c715b schema:familyName Srivatsan
70 schema:givenName T. S.
71 rdf:type schema:Person
72 Nadba7b37b8144968ad76b0dd02303026 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nafbb161cd305470e912828586d97fdc1 schema:name readcube_id
75 schema:value 97b52767f789c3816082616045f6786e794398f9650239786bf84a23c9cfd7e1
76 rdf:type schema:PropertyValue
77 Nc1077ed1ddfc4d8da185354bb34b13d2 schema:location Cham
78 schema:name Springer International Publishing
79 rdf:type schema:Organisation
80 Nd0232c1a853049dfb1e36b87b0dbc0fa schema:name K. N. Toosi University of Technology
81 rdf:type schema:Organization
82 Ne33b2291ba6c4786bf22d54d39435e95 schema:familyName Harrigan,
83 schema:givenName William C.
84 rdf:type schema:Person
85 Ne8dc604cfb4144a38a5a8e57e1bad531 rdf:first sg:person.010757235650.88
86 rdf:rest rdf:nil
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
91 schema:name Materials Engineering
92 rdf:type schema:DefinedTerm
93 sg:person.010757235650.88 schema:affiliation N451a54b721aa414fbc23eb427fd9b269
94 schema:familyName Abuzin
95 schema:givenName Yu. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010757235650.88
97 rdf:type schema:Person
98 sg:person.014002164760.34 schema:affiliation N691ce14cef834943a54db8ad411ca97e
99 schema:familyName Alipour
100 schema:givenName Mohammad
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014002164760.34
102 rdf:type schema:Person
103 sg:person.016053357264.22 schema:affiliation Nd0232c1a853049dfb1e36b87b0dbc0fa
104 schema:familyName Farsani
105 schema:givenName Reza Eslami
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016053357264.22
107 rdf:type schema:Person
108 https://doi.org/10.1002/9781118062142.ch38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032570247
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/9781118062173.ch105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046615323
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/9781118062173.ch106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031205621
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.acme.2016.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049214200
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.carbon.2013.11.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004910472
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cemconres.2015.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043022061
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.matchar.2012.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000500930
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.matchar.2015.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005229479
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.matdes.2011.03.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021303630
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.matdes.2012.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016785906
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.matdes.2012.10.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023391896
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.matdes.2013.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013910817
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.matdes.2016.01.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132149
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.msea.2011.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008912812
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s1003-6326(16)64349-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015456140
137 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...