The Tensile Response and Fracture Behavior of a Copper-Niobium Microcomposite: Role of Surface Modification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2018-01-18

AUTHORS

Paul Arindam , T. S. Srivatsan

ABSTRACT

In this research study, the influence of nanocrystalline surface modification on microhardness, tensile response and fracture behaviour of an oxide dispersion strengthened copper-niobium (Cu-Nb) micro-composite was investigated. The presence of a hardened surface layer and associated compressive residual stress lead to a noticeable increase in micro-hardness and a marginal improvement in both stiffness and strength. The increase in work hardening is quantified by the monotonic stress versus strain curve. For both the as-provided and surface treated composites tensile fracture was macroscopically ductile and microscopically revealed features reminiscent of locally brittle and ductile failure mechanisms. The mechanical properties and fracture behaviour is discussed considering nature of loading and intrinsic microstructural effects. More... »

PAGES

203-220

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_14

DOI

http://dx.doi.org/10.1007/978-3-319-72853-7_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100457374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arindam", 
        "givenName": "Paul", 
        "id": "sg:person.015667131577.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667131577.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-01-18", 
    "datePublishedReg": "2018-01-18", 
    "description": "In this research study, the influence of nanocrystalline surface modification on microhardness, tensile response and fracture behaviour of an oxide dispersion strengthened copper-niobium (Cu-Nb) micro-composite was investigated. The presence of a hardened surface layer and associated compressive residual stress lead to a noticeable increase in micro-hardness and a marginal improvement in both stiffness and strength. The increase in work hardening is quantified by the monotonic stress versus strain curve. For both the as-provided and surface treated composites tensile fracture was macroscopically ductile and microscopically revealed features reminiscent of locally brittle and ductile failure mechanisms. The mechanical properties and fracture behaviour is discussed considering nature of loading and intrinsic microstructural effects.", 
    "editor": [
      {
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Yuzheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Harrigan,", 
        "givenName": "William C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72853-7_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72852-0", 
        "978-3-319-72853-7"
      ], 
      "name": "Metal-Matrix Composites Innovations, Advances and Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "fracture behavior", 
      "tensile response", 
      "copper\u2013niobium microcomposite", 
      "intrinsic microstructural effects", 
      "surface modification", 
      "nature of loading", 
      "oxide dispersion", 
      "mechanical properties", 
      "failure mechanisms", 
      "microstructural effects", 
      "work hardening", 
      "tensile fracture", 
      "strain curves", 
      "surface layer", 
      "monotonic stress", 
      "microhardness", 
      "microcomposites", 
      "noticeable increase", 
      "hardening", 
      "marginal improvement", 
      "loading", 
      "stiffness", 
      "behavior", 
      "layer", 
      "stress lead", 
      "strength", 
      "surface", 
      "dispersion", 
      "properties", 
      "fractures", 
      "stress", 
      "modification", 
      "influence", 
      "increase", 
      "curves", 
      "improvement", 
      "lead", 
      "effect", 
      "features", 
      "mechanism", 
      "response", 
      "research studies", 
      "nature", 
      "presence", 
      "study", 
      "role", 
      "nanocrystalline surface modification", 
      "compressive residual stress lead", 
      "residual stress lead", 
      "composites tensile fracture"
    ], 
    "name": "The Tensile Response and Fracture Behavior of a Copper-Niobium Microcomposite: Role of Surface Modification", 
    "pagination": "203-220", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100457374"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72853-7_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72853-7_14", 
      "https://app.dimensions.ai/details/publication/pub.1100457374"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_414.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-72853-7_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72853-7_14'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72853-7_14 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N414279fa56d94155af5376a03235ff25
4 schema:datePublished 2018-01-18
5 schema:datePublishedReg 2018-01-18
6 schema:description In this research study, the influence of nanocrystalline surface modification on microhardness, tensile response and fracture behaviour of an oxide dispersion strengthened copper-niobium (Cu-Nb) micro-composite was investigated. The presence of a hardened surface layer and associated compressive residual stress lead to a noticeable increase in micro-hardness and a marginal improvement in both stiffness and strength. The increase in work hardening is quantified by the monotonic stress versus strain curve. For both the as-provided and surface treated composites tensile fracture was macroscopically ductile and microscopically revealed features reminiscent of locally brittle and ductile failure mechanisms. The mechanical properties and fracture behaviour is discussed considering nature of loading and intrinsic microstructural effects.
7 schema:editor N332e8b0cd39c417d8f3956c6bfb29039
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N183ea725a5bb453281b9b7988d6d8ebc
12 schema:keywords behavior
13 composites tensile fracture
14 compressive residual stress lead
15 copper–niobium microcomposite
16 curves
17 dispersion
18 effect
19 failure mechanisms
20 features
21 fracture behavior
22 fractures
23 hardening
24 improvement
25 increase
26 influence
27 intrinsic microstructural effects
28 layer
29 lead
30 loading
31 marginal improvement
32 mechanical properties
33 mechanism
34 microcomposites
35 microhardness
36 microstructural effects
37 modification
38 monotonic stress
39 nanocrystalline surface modification
40 nature
41 nature of loading
42 noticeable increase
43 oxide dispersion
44 presence
45 properties
46 research studies
47 residual stress lead
48 response
49 role
50 stiffness
51 strain curves
52 strength
53 stress
54 stress lead
55 study
56 surface
57 surface layer
58 surface modification
59 tensile fracture
60 tensile response
61 work hardening
62 schema:name The Tensile Response and Fracture Behavior of a Copper-Niobium Microcomposite: Role of Surface Modification
63 schema:pagination 203-220
64 schema:productId Nca0439248d3841119710f7cb48679631
65 Nd667cea5ce3947cd9d4d74fa188f0775
66 schema:publisher N1f2856294f164cf5a67d9b75aba5a1e0
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100457374
68 https://doi.org/10.1007/978-3-319-72853-7_14
69 schema:sdDatePublished 2021-11-01T19:00
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N7c0188dc20a24ff5a3f0e9795614bd6b
72 schema:url https://doi.org/10.1007/978-3-319-72853-7_14
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N09c14f5d14ea4442945bdcf970cb0105 rdf:first Nf4c9872513ee4e84ac22c8acc3d9085d
77 rdf:rest N21d8f525691248128397c374b58752dd
78 N0a504a559ab64afcbc261b274e7cf48f schema:familyName Harrigan,
79 schema:givenName William C.
80 rdf:type schema:Person
81 N183ea725a5bb453281b9b7988d6d8ebc schema:isbn 978-3-319-72852-0
82 978-3-319-72853-7
83 schema:name Metal-Matrix Composites Innovations, Advances and Applications
84 rdf:type schema:Book
85 N1f2856294f164cf5a67d9b75aba5a1e0 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N21d8f525691248128397c374b58752dd rdf:first N0a504a559ab64afcbc261b274e7cf48f
88 rdf:rest rdf:nil
89 N24c43692b22749e7939264a9a01d3740 rdf:first sg:person.015440524245.80
90 rdf:rest rdf:nil
91 N332e8b0cd39c417d8f3956c6bfb29039 rdf:first N54ab51f5a1ac47fc90e259d409fe5a63
92 rdf:rest N09c14f5d14ea4442945bdcf970cb0105
93 N414279fa56d94155af5376a03235ff25 rdf:first sg:person.015667131577.59
94 rdf:rest N24c43692b22749e7939264a9a01d3740
95 N54ab51f5a1ac47fc90e259d409fe5a63 schema:familyName Srivatsan
96 schema:givenName T. S.
97 rdf:type schema:Person
98 N7c0188dc20a24ff5a3f0e9795614bd6b schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nca0439248d3841119710f7cb48679631 schema:name doi
101 schema:value 10.1007/978-3-319-72853-7_14
102 rdf:type schema:PropertyValue
103 Nd667cea5ce3947cd9d4d74fa188f0775 schema:name dimensions_id
104 schema:value pub.1100457374
105 rdf:type schema:PropertyValue
106 Nf4c9872513ee4e84ac22c8acc3d9085d schema:familyName Zhang
107 schema:givenName Yuzheng
108 rdf:type schema:Person
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
116 schema:familyName Srivatsan
117 schema:givenName T. S.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
119 rdf:type schema:Person
120 sg:person.015667131577.59 schema:affiliation grid-institutes:grid.265881.0
121 schema:familyName Arindam
122 schema:givenName Paul
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667131577.59
124 rdf:type schema:Person
125 grid-institutes:grid.265881.0 schema:alternateName Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
126 The University of Akron, 44325-3903, Akron, OH, USA
127 schema:name Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
128 The University of Akron, 44325-3903, Akron, OH, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...