Fredholm Conditions on Non-compact Manifolds: Theory and Examples View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2018-08-23

AUTHORS

Catarina Carvalho , Victor Nistor , Yu Qiao

ABSTRACT

We give explicit Fredholm conditions for classes of pseudodifferential operators on suitable singular and non-compact spaces. In particular, we include a “user’s guide” to Fredholm conditions on particular classes of manifolds including asymptotically hyperbolic manifolds, asymptotically Euclidean (or conic) manifolds, and manifolds with poly-cylindrical ends. The reader interested in applications should be able to read right away the results related to those examples, beginning with Section 5. Our general, theoretical results are that an operator adapted to the geometry is Fredholm if, and only if, it is elliptic and all its limit operators (in a sense to be made precise) are invertible. Central to our theoretical results is the concept of a “Fredholm groupoid.” By definition, a Fredholm groupoid is one for which this characterization of the Fredholm condition is valid. We use the notions of exhaustive and strictly spectral families of representations to obtain a general characterization of Fredholm groupoids. In particular, we introduce the class of the so-called groupoids with Exel’s property as the groupoids for which the regular representations are exhaustive. We show that the class of “stratified submersion groupoids” has Exel’s property, where stratified submersion groupoids are defined by gluing fibered pull-backs of bundles of Lie groups. We prove that a stratified submersion groupoid is Fredholm whenever its isotropy groups are amenable. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. This fact is exploited to yield Fredholm conditions not only in the above-mentioned classes, but also on manifolds that are obtained by desingularization or by blow-up of singular sets. More... »

PAGES

79-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72449-2_4

DOI

http://dx.doi.org/10.1007/978-3-319-72449-2_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106285071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "Departamento de Matem\u00e1tica, Instituto Superior T\u00e9cnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carvalho", 
        "givenName": "Catarina", 
        "id": "sg:person.011030544300.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e9 de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, F-57045, Metz, France", 
            "Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nistor", 
        "givenName": "Victor", 
        "id": "sg:person.011176764757.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Information Science, Shaanxi Normal University, 710119, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.412498.2", 
          "name": [
            "School of Mathematics and Information Science, Shaanxi Normal University, 710119, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiao", 
        "givenName": "Yu", 
        "id": "sg:person.07702632221.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702632221.51"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-08-23", 
    "datePublishedReg": "2018-08-23", 
    "description": "We give explicit Fredholm conditions for classes of pseudodifferential operators on suitable singular and non-compact spaces. In particular, we include a \u201cuser\u2019s guide\u201d to Fredholm conditions on particular classes of manifolds including asymptotically hyperbolic manifolds, asymptotically Euclidean (or conic) manifolds, and manifolds with poly-cylindrical ends. The reader interested in applications should be able to read right away the results related to those examples, beginning with Section 5. Our general, theoretical results are that an operator adapted to the geometry is Fredholm if, and only if, it is elliptic and all its limit operators (in a sense to be made precise) are invertible. Central to our theoretical results is the concept of a \u201cFredholm groupoid.\u201d By definition, a Fredholm groupoid is one for which this characterization of the Fredholm condition is valid. We use the notions of exhaustive and strictly spectral families of representations to obtain a general characterization of Fredholm groupoids. In particular, we introduce the class of the so-called groupoids with Exel\u2019s property as the groupoids for which the regular representations are exhaustive. We show that the class of \u201cstratified submersion groupoids\u201d has Exel\u2019s property, where stratified submersion groupoids are defined by gluing fibered pull-backs of bundles of Lie groups. We prove that a stratified submersion groupoid is Fredholm whenever its isotropy groups are amenable. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. This fact is exploited to yield Fredholm conditions not only in the above-mentioned classes, but also on manifolds that are obtained by desingularization or by blow-up of singular sets.", 
    "editor": [
      {
        "familyName": "Andr\u00e9", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Bastos", 
        "givenName": "M. Am\u00e9lia", 
        "type": "Person"
      }, 
      {
        "familyName": "Karlovich", 
        "givenName": "Alexei Yu.", 
        "type": "Person"
      }, 
      {
        "familyName": "Silbermann", 
        "givenName": "Bernd", 
        "type": "Person"
      }, 
      {
        "familyName": "Zaballa", 
        "givenName": "Ion", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72449-2_4", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72448-5", 
        "978-3-319-72449-2"
      ], 
      "name": "Operator Theory, Operator Algebras, and Matrix Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "Fredholm conditions", 
      "pseudodifferential operators", 
      "theoretical results", 
      "non-compact manifolds", 
      "non-compact spaces", 
      "Lie groups", 
      "isotropy group", 
      "Euclidean manifolds", 
      "hyperbolic manifolds", 
      "singular set", 
      "regular representation", 
      "groupoids", 
      "limit operator", 
      "manifold", 
      "spectral family", 
      "particular class", 
      "Fredholm", 
      "operators", 
      "Section 5", 
      "general characterization", 
      "class", 
      "desingularization", 
      "representation", 
      "properties", 
      "geometry", 
      "theory", 
      "user guide", 
      "space", 
      "set", 
      "conditions", 
      "results", 
      "applications", 
      "framework", 
      "notion", 
      "bundles", 
      "definition", 
      "concept", 
      "fact", 
      "characterization", 
      "guide", 
      "end", 
      "family", 
      "readers", 
      "group", 
      "practice", 
      "example"
    ], 
    "name": "Fredholm Conditions on Non-compact Manifolds: Theory and Examples", 
    "pagination": "79-122", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106285071"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72449-2_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72449-2_4", 
      "https://app.dimensions.ai/details/publication/pub.1106285071"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_218.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-72449-2_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72449-2_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72449-2_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72449-2_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72449-2_4'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72449-2_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N26ffcdf98e5e401ba0c90e2106245326
4 schema:datePublished 2018-08-23
5 schema:datePublishedReg 2018-08-23
6 schema:description We give explicit Fredholm conditions for classes of pseudodifferential operators on suitable singular and non-compact spaces. In particular, we include a “user’s guide” to Fredholm conditions on particular classes of manifolds including asymptotically hyperbolic manifolds, asymptotically Euclidean (or conic) manifolds, and manifolds with poly-cylindrical ends. The reader interested in applications should be able to read right away the results related to those examples, beginning with Section 5. Our general, theoretical results are that an operator adapted to the geometry is Fredholm if, and only if, it is elliptic and all its limit operators (in a sense to be made precise) are invertible. Central to our theoretical results is the concept of a “Fredholm groupoid.” By definition, a Fredholm groupoid is one for which this characterization of the Fredholm condition is valid. We use the notions of exhaustive and strictly spectral families of representations to obtain a general characterization of Fredholm groupoids. In particular, we introduce the class of the so-called groupoids with Exel’s property as the groupoids for which the regular representations are exhaustive. We show that the class of “stratified submersion groupoids” has Exel’s property, where stratified submersion groupoids are defined by gluing fibered pull-backs of bundles of Lie groups. We prove that a stratified submersion groupoid is Fredholm whenever its isotropy groups are amenable. Many groupoids, and hence many pseudodifferential operators appearing in practice, fit into this framework. This fact is exploited to yield Fredholm conditions not only in the above-mentioned classes, but also on manifolds that are obtained by desingularization or by blow-up of singular sets.
7 schema:editor N71c29f2fcb964230a72902e5a6ca6458
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N9cafb3af1ebe4753be00c8f7aa24a36d
11 schema:keywords Euclidean manifolds
12 Fredholm
13 Fredholm conditions
14 Lie groups
15 Section 5
16 applications
17 bundles
18 characterization
19 class
20 concept
21 conditions
22 definition
23 desingularization
24 end
25 example
26 fact
27 family
28 framework
29 general characterization
30 geometry
31 group
32 groupoids
33 guide
34 hyperbolic manifolds
35 isotropy group
36 limit operator
37 manifold
38 non-compact manifolds
39 non-compact spaces
40 notion
41 operators
42 particular class
43 practice
44 properties
45 pseudodifferential operators
46 readers
47 regular representation
48 representation
49 results
50 set
51 singular set
52 space
53 spectral family
54 theoretical results
55 theory
56 user guide
57 schema:name Fredholm Conditions on Non-compact Manifolds: Theory and Examples
58 schema:pagination 79-122
59 schema:productId N0c378eeafe83417698cccb6a5d3773f2
60 N6cd834e00e604167aa0b959dc6aec46f
61 schema:publisher N107d29428e57451bb65a9de891ac4281
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106285071
63 https://doi.org/10.1007/978-3-319-72449-2_4
64 schema:sdDatePublished 2022-08-04T17:16
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N87c51b4980de4afabb2575739cb65f7e
67 schema:url https://doi.org/10.1007/978-3-319-72449-2_4
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0c378eeafe83417698cccb6a5d3773f2 schema:name doi
72 schema:value 10.1007/978-3-319-72449-2_4
73 rdf:type schema:PropertyValue
74 N107d29428e57451bb65a9de891ac4281 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N1337abc0f668499a8a3c96e23427af2e schema:familyName André
77 schema:givenName Carlos
78 rdf:type schema:Person
79 N1742bd0cc54c4d9bb25c279c7d21d86d rdf:first N869c111f75c749d8932fbefe6eb028c2
80 rdf:rest N9e8d29715a6348778c319ffa290368f3
81 N26ffcdf98e5e401ba0c90e2106245326 rdf:first sg:person.011030544300.49
82 rdf:rest Ncf149efec9aa432c8d641964aea2d58b
83 N38545eb468ec468096493f423e595364 schema:familyName Zaballa
84 schema:givenName Ion
85 rdf:type schema:Person
86 N535922ecdd464ac08736bc8b99d48c11 rdf:first sg:person.07702632221.51
87 rdf:rest rdf:nil
88 N6cd834e00e604167aa0b959dc6aec46f schema:name dimensions_id
89 schema:value pub.1106285071
90 rdf:type schema:PropertyValue
91 N71c29f2fcb964230a72902e5a6ca6458 rdf:first N1337abc0f668499a8a3c96e23427af2e
92 rdf:rest N1742bd0cc54c4d9bb25c279c7d21d86d
93 N7c862da99cd74964806eaa645f57020d rdf:first N38545eb468ec468096493f423e595364
94 rdf:rest rdf:nil
95 N869c111f75c749d8932fbefe6eb028c2 schema:familyName Bastos
96 schema:givenName M. Amélia
97 rdf:type schema:Person
98 N87c51b4980de4afabb2575739cb65f7e schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N918c02da3678424f81901be77266ba26 schema:familyName Silbermann
101 schema:givenName Bernd
102 rdf:type schema:Person
103 N9cafb3af1ebe4753be00c8f7aa24a36d schema:isbn 978-3-319-72448-5
104 978-3-319-72449-2
105 schema:name Operator Theory, Operator Algebras, and Matrix Theory
106 rdf:type schema:Book
107 N9e8d29715a6348778c319ffa290368f3 rdf:first Ncff0d330c81f4779a1976a5c91368bed
108 rdf:rest Ndecb03a607a7436f882e8b702ef6c928
109 Ncf149efec9aa432c8d641964aea2d58b rdf:first sg:person.011176764757.94
110 rdf:rest N535922ecdd464ac08736bc8b99d48c11
111 Ncff0d330c81f4779a1976a5c91368bed schema:familyName Karlovich
112 schema:givenName Alexei Yu.
113 rdf:type schema:Person
114 Ndecb03a607a7436f882e8b702ef6c928 rdf:first N918c02da3678424f81901be77266ba26
115 rdf:rest N7c862da99cd74964806eaa645f57020d
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
120 schema:name Pure Mathematics
121 rdf:type schema:DefinedTerm
122 sg:person.011030544300.49 schema:affiliation grid-institutes:grid.9983.b
123 schema:familyName Carvalho
124 schema:givenName Catarina
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49
126 rdf:type schema:Person
127 sg:person.011176764757.94 schema:affiliation grid-institutes:None
128 schema:familyName Nistor
129 schema:givenName Victor
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94
131 rdf:type schema:Person
132 sg:person.07702632221.51 schema:affiliation grid-institutes:grid.412498.2
133 schema:familyName Qiao
134 schema:givenName Yu
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07702632221.51
136 rdf:type schema:Person
137 grid-institutes:None schema:alternateName Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania
138 schema:name Inst. Math. Romanian Acad., PO BOX 1-764, 014700, Bucharest, Romania
139 Université de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, F-57045, Metz, France
140 rdf:type schema:Organization
141 grid-institutes:grid.412498.2 schema:alternateName School of Mathematics and Information Science, Shaanxi Normal University, 710119, Xi’an, China
142 schema:name School of Mathematics and Information Science, Shaanxi Normal University, 710119, Xi’an, China
143 rdf:type schema:Organization
144 grid-institutes:grid.9983.b schema:alternateName Departamento de Matemática, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
145 schema:name Departamento de Matemática, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...