An Introduction to Adversarial Machine Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-11-25

AUTHORS

Atul Kumar , Sameep Mehta , Deepak Vijaykeerthy

ABSTRACT

Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (e.g., training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing the learning process, or affecting the performance of the learned model or causing the system make error only in attacker’s planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area named Adversarial machine learning. More... »

PAGES

293-299

Book

TITLE

Big Data Analytics

ISBN

978-3-319-72412-6
978-3-319-72413-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72413-3_20

DOI

http://dx.doi.org/10.1007/978-3-319-72413-3_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092997377


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, G2 Block, 8th Fl., Manyata Tech Park, Ngawara, 560045, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Atul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, ISID Campus, Institutional Area, Vasant Kunj, 110070, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehta", 
        "givenName": "Sameep", 
        "id": "sg:person.014674104577.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674104577.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - India", 
          "id": "https://www.grid.ac/institutes/grid.481550.d", 
          "name": [
            "IBM Research, G2 Block, 8th Fl., Manyata Tech Park, Ngawara, 560045, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vijaykeerthy", 
        "givenName": "Deepak", 
        "id": "sg:person.016154414431.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016154414431.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/3052973.3053009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084925114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2016.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093700459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/eurosp.2016.36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093716599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sp.2016.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094020190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24963/ijcai.2018/585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105386722"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-25", 
    "datePublishedReg": "2017-11-25", 
    "description": "Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (e.g., training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing the learning process, or affecting the performance of the learned model or causing the system make error only in attacker\u2019s planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area named Adversarial machine learning.", 
    "editor": [
      {
        "familyName": "Reddy", 
        "givenName": "P. Krishna", 
        "type": "Person"
      }, 
      {
        "familyName": "Sureka", 
        "givenName": "Ashish", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakravarthy", 
        "givenName": "Sharma", 
        "type": "Person"
      }, 
      {
        "familyName": "Bhalla", 
        "givenName": "Subhash", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72413-3_20", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72412-6", 
        "978-3-319-72413-3"
      ], 
      "name": "Big Data Analytics", 
      "type": "Book"
    }, 
    "name": "An Introduction to Adversarial Machine Learning", 
    "pagination": "293-299", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72413-3_20"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3d13ddd7c948be0b65141bcc626056e00fafeba67bd060471e691ff7af5b5a9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092997377"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72413-3_20", 
      "https://app.dimensions.ai/details/publication/pub.1092997377"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100788_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-72413-3_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72413-3_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72413-3_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72413-3_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72413-3_20'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      31 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72413-3_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfbc96aa1cd0e462f98c7fabc759e43ed
4 schema:citation https://doi.org/10.1109/cvpr.2016.282
5 https://doi.org/10.1109/eurosp.2016.36
6 https://doi.org/10.1109/sp.2016.41
7 https://doi.org/10.1145/3052973.3053009
8 https://doi.org/10.24963/ijcai.2018/585
9 schema:datePublished 2017-11-25
10 schema:datePublishedReg 2017-11-25
11 schema:description Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (e.g., training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing the learning process, or affecting the performance of the learned model or causing the system make error only in attacker’s planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area named Adversarial machine learning.
12 schema:editor N1b0d007e5142432e95c590f6398eb97d
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N9c32f2524f294710b4c8db75c125842f
17 schema:name An Introduction to Adversarial Machine Learning
18 schema:pagination 293-299
19 schema:productId N9379007bc3214bd4b5c8046c3167fb5c
20 Nb5ac3cf0eb49465cabfe340e33648597
21 Nee259db6f5ac47f0ba7fe58db7806de5
22 schema:publisher N3081f644f3174e8e8170ac70caf8e4b1
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092997377
24 https://doi.org/10.1007/978-3-319-72413-3_20
25 schema:sdDatePublished 2019-04-16T05:00
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N1693ca67569c4deb96be271d50562070
28 schema:url https://link.springer.com/10.1007%2F978-3-319-72413-3_20
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0f5005ebdc884f33986f61996c0571e5 schema:familyName Chakravarthy
33 schema:givenName Sharma
34 rdf:type schema:Person
35 N1176bba6b3404b61bdeb2a1c8602d263 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
36 schema:familyName Kumar
37 schema:givenName Atul
38 rdf:type schema:Person
39 N1693ca67569c4deb96be271d50562070 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N1b0d007e5142432e95c590f6398eb97d rdf:first N605a96276bf64f9ba494ced469af99af
42 rdf:rest N553d32a485584e23931ee909fc2cb100
43 N3081f644f3174e8e8170ac70caf8e4b1 schema:location Cham
44 schema:name Springer International Publishing
45 rdf:type schema:Organisation
46 N3340056064484657a969af465a080f1f rdf:first Nd8cba100f1fd47f39f314d72c17b361d
47 rdf:rest rdf:nil
48 N528554be6c0d479d960f362e29925609 rdf:first sg:person.016154414431.93
49 rdf:rest rdf:nil
50 N553d32a485584e23931ee909fc2cb100 rdf:first Nf78a223fd3e5451ea192c9f896471df3
51 rdf:rest N61b651436e0b4102be15b68f90adabbf
52 N605a96276bf64f9ba494ced469af99af schema:familyName Reddy
53 schema:givenName P. Krishna
54 rdf:type schema:Person
55 N61b651436e0b4102be15b68f90adabbf rdf:first N0f5005ebdc884f33986f61996c0571e5
56 rdf:rest N3340056064484657a969af465a080f1f
57 N63578734a18a4faeb9db8de3ee093976 rdf:first sg:person.014674104577.54
58 rdf:rest N528554be6c0d479d960f362e29925609
59 N9379007bc3214bd4b5c8046c3167fb5c schema:name readcube_id
60 schema:value d3d13ddd7c948be0b65141bcc626056e00fafeba67bd060471e691ff7af5b5a9
61 rdf:type schema:PropertyValue
62 N9c32f2524f294710b4c8db75c125842f schema:isbn 978-3-319-72412-6
63 978-3-319-72413-3
64 schema:name Big Data Analytics
65 rdf:type schema:Book
66 Nb5ac3cf0eb49465cabfe340e33648597 schema:name dimensions_id
67 schema:value pub.1092997377
68 rdf:type schema:PropertyValue
69 Nd8cba100f1fd47f39f314d72c17b361d schema:familyName Bhalla
70 schema:givenName Subhash
71 rdf:type schema:Person
72 Nee259db6f5ac47f0ba7fe58db7806de5 schema:name doi
73 schema:value 10.1007/978-3-319-72413-3_20
74 rdf:type schema:PropertyValue
75 Nf78a223fd3e5451ea192c9f896471df3 schema:familyName Sureka
76 schema:givenName Ashish
77 rdf:type schema:Person
78 Nfbc96aa1cd0e462f98c7fabc759e43ed rdf:first N1176bba6b3404b61bdeb2a1c8602d263
79 rdf:rest N63578734a18a4faeb9db8de3ee093976
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:person.014674104577.54 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
87 schema:familyName Mehta
88 schema:givenName Sameep
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014674104577.54
90 rdf:type schema:Person
91 sg:person.016154414431.93 schema:affiliation https://www.grid.ac/institutes/grid.481550.d
92 schema:familyName Vijaykeerthy
93 schema:givenName Deepak
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016154414431.93
95 rdf:type schema:Person
96 https://doi.org/10.1109/cvpr.2016.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093700459
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1109/eurosp.2016.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093716599
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/sp.2016.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094020190
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1145/3052973.3053009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084925114
103 rdf:type schema:CreativeWork
104 https://doi.org/10.24963/ijcai.2018/585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105386722
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.481550.d schema:alternateName IBM Research - India
107 schema:name IBM Research, G2 Block, 8th Fl., Manyata Tech Park, Ngawara, 560045, Bangalore, India
108 IBM Research, ISID Campus, Institutional Area, Vasant Kunj, 110070, New Delhi, India
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...