Fast Discretized Gaussian Sampling and Post-quantum TLS Ciphersuite View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Xinwei Gao , Lin Li , Jintai Ding , Jiqiang Liu , R. V. Saraswathy , Zhe Liu

ABSTRACT

LWE/RLWE-based cryptosystems require sampling error term from discrete Gaussian distribution. However, some existing samplers are somehow slow under certain circumstances therefore efficiency of such schemes is restricted. In this paper, we introduce a more efficient discretized Gaussian sampler based on ziggurat sampling algorithm. We also analyze statistical quality of our sampler to prove that it can be adopted in LWE/RLWE-based cryptosystems. Compared with ziggurat-based sampler by Buchmann et al. related samplers by Peikert, Ducas et al. and Knuth-Yao, our sampler achieves more than 2x speedup when standard deviation is large. This can benefit constructions rely on noise flooding (e.g., homomorphic encryption). We also present two applications: First, we use our sampler to optimize the RLWE-based authenticated key exchange (AKE) protocol by Zhang et al. We achieve 1.14x speedup on total runtime of this protocol over major parameter choices. Second, we give practical post-quantum Transport Layer Security (TLS) ciphersuite. Our ciphersuite inherits advantages from TLS and the optimized AKE protocol. Performance of our proof-of-concept implementation is close to TLS v1.2 ciphersuites and one post-quantum TLS construction. More... »

PAGES

551-565

Book

TITLE

Information Security Practice and Experience

ISBN

978-3-319-72358-7
978-3-319-72359-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-72359-4_33

DOI

http://dx.doi.org/10.1007/978-3-319-72359-4_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099620118


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Beijing Jiaotong University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Xinwei", 
        "id": "sg:person.015601325324.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601325324.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Beijing Jiaotong University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Lin", 
        "id": "sg:person.07750070361.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750070361.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "University of Cincinnati"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jintai", 
        "id": "sg:person.010723403013.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.181531.f", 
          "name": [
            "Beijing Jiaotong University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Jiqiang", 
        "id": "sg:person.015366114727.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366114727.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati", 
          "id": "https://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "University of Cincinnati"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraswathy", 
        "givenName": "R. V.", 
        "id": "sg:person.013714101065.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714101065.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Luxembourg", 
          "id": "https://www.grid.ac/institutes/grid.16008.3f", 
          "name": [
            "University of Luxembourg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Zhe", 
        "id": "sg:person.013144776623.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144776623.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00200-014-0218-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001911198", 
          "https://doi.org/10.1007/s00200-014-0218-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1568318.1568324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013302643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1536414.1536461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015599493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-29011-4_43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018056035", 
          "https://doi.org/10.1007/978-3-642-29011-4_43"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14623-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351160", 
          "https://doi.org/10.1007/978-3-642-14623-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14623-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021351160", 
          "https://doi.org/10.1007/978-3-642-14623-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-13190-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025305533", 
          "https://doi.org/10.1007/978-3-642-13190-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48329-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027269192", 
          "https://doi.org/10.1007/3-540-48329-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48329-2_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027269192", 
          "https://doi.org/10.1007/3-540-48329-2_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11535218_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027574053", 
          "https://doi.org/10.1007/11535218_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11535218_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027574053", 
          "https://doi.org/10.1007/11535218_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-43414-7_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031724726", 
          "https://doi.org/10.1007/978-3-662-43414-7_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40041-4_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038917988", 
          "https://doi.org/10.1007/978-3-642-40041-4_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88702-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041772030", 
          "https://doi.org/10.1007/978-3-540-88702-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88702-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041772030", 
          "https://doi.org/10.1007/978-3-540-88702-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46803-6_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054998", 
          "https://doi.org/10.1007/978-3-662-46803-6_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-46803-6_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048054998", 
          "https://doi.org/10.1007/978-3-662-46803-6_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/237814.237866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053319325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1976.1055638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539796300933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v005.i08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sp.2015.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095735144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.1994.365700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095740049"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "LWE/RLWE-based cryptosystems require sampling error term from discrete Gaussian distribution. However, some existing samplers are somehow slow under certain circumstances therefore efficiency of such schemes is restricted. In this paper, we introduce a more efficient discretized Gaussian sampler based on ziggurat sampling algorithm. We also analyze statistical quality of our sampler to prove that it can be adopted in LWE/RLWE-based cryptosystems. Compared with ziggurat-based sampler by Buchmann et al. related samplers by Peikert, Ducas et al. and Knuth-Yao, our sampler achieves more than 2x speedup when standard deviation is large. This can benefit constructions rely on noise flooding (e.g., homomorphic encryption). We also present two applications: First, we use our sampler to optimize the RLWE-based authenticated key exchange (AKE) protocol by Zhang et al. We achieve 1.14x speedup on total runtime of this protocol over major parameter choices. Second, we give practical post-quantum Transport Layer Security (TLS) ciphersuite. Our ciphersuite inherits advantages from TLS and the optimized AKE protocol. Performance of our proof-of-concept implementation is close to TLS v1.2 ciphersuites and one post-quantum TLS construction.", 
    "editor": [
      {
        "familyName": "Liu", 
        "givenName": "Joseph K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Samarati", 
        "givenName": "Pierangela", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-72359-4_33", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-72358-7", 
        "978-3-319-72359-4"
      ], 
      "name": "Information Security Practice and Experience", 
      "type": "Book"
    }, 
    "name": "Fast Discretized Gaussian Sampling and Post-quantum TLS Ciphersuite", 
    "pagination": "551-565", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-72359-4_33"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4cb8ee1f8b145005221a03bd9ee38d37b51fb821223f9c5af610c0bb989cb05"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099620118"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-72359-4_33", 
      "https://app.dimensions.ai/details/publication/pub.1099620118"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000603.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-72359-4_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72359-4_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72359-4_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72359-4_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-72359-4_33'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-72359-4_33 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Ndd2257a86c594ffcbf61ac7f6c6c1244
4 schema:citation sg:pub.10.1007/11535218_33
5 sg:pub.10.1007/3-540-48329-2_21
6 sg:pub.10.1007/978-3-540-88702-7
7 sg:pub.10.1007/978-3-642-13190-5_1
8 sg:pub.10.1007/978-3-642-14623-7_5
9 sg:pub.10.1007/978-3-642-29011-4_43
10 sg:pub.10.1007/978-3-642-40041-4_3
11 sg:pub.10.1007/978-3-662-43414-7_20
12 sg:pub.10.1007/978-3-662-46803-6_24
13 sg:pub.10.1007/s00200-014-0218-3
14 https://doi.org/10.1109/sfcs.1994.365700
15 https://doi.org/10.1109/sp.2015.40
16 https://doi.org/10.1109/tit.1976.1055638
17 https://doi.org/10.1137/s0097539796300933
18 https://doi.org/10.1145/1536414.1536461
19 https://doi.org/10.1145/1568318.1568324
20 https://doi.org/10.1145/237814.237866
21 https://doi.org/10.18637/jss.v005.i08
22 schema:datePublished 2017
23 schema:datePublishedReg 2017-01-01
24 schema:description LWE/RLWE-based cryptosystems require sampling error term from discrete Gaussian distribution. However, some existing samplers are somehow slow under certain circumstances therefore efficiency of such schemes is restricted. In this paper, we introduce a more efficient discretized Gaussian sampler based on ziggurat sampling algorithm. We also analyze statistical quality of our sampler to prove that it can be adopted in LWE/RLWE-based cryptosystems. Compared with ziggurat-based sampler by Buchmann et al. related samplers by Peikert, Ducas et al. and Knuth-Yao, our sampler achieves more than 2x speedup when standard deviation is large. This can benefit constructions rely on noise flooding (e.g., homomorphic encryption). We also present two applications: First, we use our sampler to optimize the RLWE-based authenticated key exchange (AKE) protocol by Zhang et al. We achieve 1.14x speedup on total runtime of this protocol over major parameter choices. Second, we give practical post-quantum Transport Layer Security (TLS) ciphersuite. Our ciphersuite inherits advantages from TLS and the optimized AKE protocol. Performance of our proof-of-concept implementation is close to TLS v1.2 ciphersuites and one post-quantum TLS construction.
25 schema:editor N178a2fb6462c4477a499bd9241de10d2
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf Ncdfef6d708c3412cbfa3942409265c61
30 schema:name Fast Discretized Gaussian Sampling and Post-quantum TLS Ciphersuite
31 schema:pagination 551-565
32 schema:productId N0ebebd686bcb4bf7ab1a2d096c62b8f2
33 N91c98fd419314c3182aa413694a62656
34 Nfe65715c8bce464eb36293e6e483bcde
35 schema:publisher Nc3e02e6f9c624041bcd8e2409b1fee27
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099620118
37 https://doi.org/10.1007/978-3-319-72359-4_33
38 schema:sdDatePublished 2019-04-15T18:52
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Nd4fd1dd1c3304b1ebf39114a04ad6773
41 schema:url http://link.springer.com/10.1007/978-3-319-72359-4_33
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0331aefa037247e280be96177e784826 schema:familyName Liu
46 schema:givenName Joseph K.
47 rdf:type schema:Person
48 N0ebebd686bcb4bf7ab1a2d096c62b8f2 schema:name doi
49 schema:value 10.1007/978-3-319-72359-4_33
50 rdf:type schema:PropertyValue
51 N178a2fb6462c4477a499bd9241de10d2 rdf:first N0331aefa037247e280be96177e784826
52 rdf:rest Nb333c3339f4a40349d24a225b301fd6f
53 N3116f055259f4d189be31798db99c38a schema:familyName Samarati
54 schema:givenName Pierangela
55 rdf:type schema:Person
56 N61be0a70c1524f67b27324ff6a1082c9 rdf:first sg:person.013144776623.84
57 rdf:rest rdf:nil
58 N8dc167f2a3e4421eb1fdd3f60a504d1d rdf:first sg:person.010723403013.04
59 rdf:rest N9d40d5cecbf64d0895c56ce9622eacdb
60 N91c98fd419314c3182aa413694a62656 schema:name readcube_id
61 schema:value c4cb8ee1f8b145005221a03bd9ee38d37b51fb821223f9c5af610c0bb989cb05
62 rdf:type schema:PropertyValue
63 N9d40d5cecbf64d0895c56ce9622eacdb rdf:first sg:person.015366114727.14
64 rdf:rest Ne069fc3313234e609265e3b8991e12f6
65 Nb333c3339f4a40349d24a225b301fd6f rdf:first N3116f055259f4d189be31798db99c38a
66 rdf:rest rdf:nil
67 Nc3e02e6f9c624041bcd8e2409b1fee27 schema:location Cham
68 schema:name Springer International Publishing
69 rdf:type schema:Organisation
70 Nc77732a12c1f4e27b7200802d7b32023 rdf:first sg:person.07750070361.09
71 rdf:rest N8dc167f2a3e4421eb1fdd3f60a504d1d
72 Ncdfef6d708c3412cbfa3942409265c61 schema:isbn 978-3-319-72358-7
73 978-3-319-72359-4
74 schema:name Information Security Practice and Experience
75 rdf:type schema:Book
76 Nd4fd1dd1c3304b1ebf39114a04ad6773 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ndd2257a86c594ffcbf61ac7f6c6c1244 rdf:first sg:person.015601325324.15
79 rdf:rest Nc77732a12c1f4e27b7200802d7b32023
80 Ne069fc3313234e609265e3b8991e12f6 rdf:first sg:person.013714101065.16
81 rdf:rest N61be0a70c1524f67b27324ff6a1082c9
82 Nfe65715c8bce464eb36293e6e483bcde schema:name dimensions_id
83 schema:value pub.1099620118
84 rdf:type schema:PropertyValue
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
89 schema:name Data Format
90 rdf:type schema:DefinedTerm
91 sg:person.010723403013.04 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
92 schema:familyName Ding
93 schema:givenName Jintai
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723403013.04
95 rdf:type schema:Person
96 sg:person.013144776623.84 schema:affiliation https://www.grid.ac/institutes/grid.16008.3f
97 schema:familyName Liu
98 schema:givenName Zhe
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013144776623.84
100 rdf:type schema:Person
101 sg:person.013714101065.16 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
102 schema:familyName Saraswathy
103 schema:givenName R. V.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013714101065.16
105 rdf:type schema:Person
106 sg:person.015366114727.14 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
107 schema:familyName Liu
108 schema:givenName Jiqiang
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366114727.14
110 rdf:type schema:Person
111 sg:person.015601325324.15 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
112 schema:familyName Gao
113 schema:givenName Xinwei
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015601325324.15
115 rdf:type schema:Person
116 sg:person.07750070361.09 schema:affiliation https://www.grid.ac/institutes/grid.181531.f
117 schema:familyName Li
118 schema:givenName Lin
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750070361.09
120 rdf:type schema:Person
121 sg:pub.10.1007/11535218_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027574053
122 https://doi.org/10.1007/11535218_33
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/3-540-48329-2_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027269192
125 https://doi.org/10.1007/3-540-48329-2_21
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/978-3-540-88702-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041772030
128 https://doi.org/10.1007/978-3-540-88702-7
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-642-13190-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305533
131 https://doi.org/10.1007/978-3-642-13190-5_1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-14623-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021351160
134 https://doi.org/10.1007/978-3-642-14623-7_5
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-29011-4_43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018056035
137 https://doi.org/10.1007/978-3-642-29011-4_43
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-642-40041-4_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038917988
140 https://doi.org/10.1007/978-3-642-40041-4_3
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-662-43414-7_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031724726
143 https://doi.org/10.1007/978-3-662-43414-7_20
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-662-46803-6_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048054998
146 https://doi.org/10.1007/978-3-662-46803-6_24
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00200-014-0218-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001911198
149 https://doi.org/10.1007/s00200-014-0218-3
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/sfcs.1994.365700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095740049
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/sp.2015.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095735144
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tit.1976.1055638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647862
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/s0097539796300933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880101
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1145/1536414.1536461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015599493
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1145/1568318.1568324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013302643
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1145/237814.237866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053319325
164 rdf:type schema:CreativeWork
165 https://doi.org/10.18637/jss.v005.i08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672098
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.16008.3f schema:alternateName University of Luxembourg
168 schema:name University of Luxembourg
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.181531.f schema:alternateName Beijing Jiaotong University
171 schema:name Beijing Jiaotong University
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
174 schema:name University of Cincinnati
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...