Recent Results and Open Problems in Evolutionary Multiobjective Optimization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-11-19

AUTHORS

Carlos A. Coello Coello

ABSTRACT

Evolutionary algorithms (as well as a number of other metaheuristics) have become a popular choice for solving problems having two or more (often conflicting) objectives (the so-called multi-objective optimization problems). This area, known as EMOO (Evolutionary Multi-Objective Optimization) has had an important growth in the last 20 years, and several people (particularly newcomers) get the impression that it is now very difficult to make contributions of sufficient value to justify, for example, a PhD thesis. However, a lot of interesting research is still under way. In this paper, we will briefly review some of the research topics on evolutionary multi-objective optimization that are currently attracting a lot of interest (e.g., indicator-based selection, many-objective optimization and use of surrogates) and which represent good opportunities for doing research. Some of the challenges currently faced by this discipline will also be delineated. More... »

PAGES

3-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-71069-3_1

DOI

http://dx.doi.org/10.1007/978-3-319-71069-3_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092754934


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Evolutionary Computation Group, Departamento de Computaci\u00f3n, CINVESTAV, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico D.F., Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Evolutionary Computation Group, Departamento de Computaci\u00f3n, CINVESTAV, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico D.F., Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coello Coello", 
        "givenName": "Carlos A.", 
        "id": "sg:person.01345625161.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-11-19", 
    "datePublishedReg": "2017-11-19", 
    "description": "Evolutionary algorithms (as well as a number of other metaheuristics) have become a popular choice for solving problems having two or more (often conflicting) objectives (the so-called multi-objective optimization problems). This area, known as EMOO (Evolutionary Multi-Objective Optimization) has had an important growth in the last 20 years, and several people (particularly newcomers) get the impression that it is now very difficult to make contributions of sufficient value to justify, for example, a PhD thesis. However, a lot of interesting research is still under way. In this paper, we will briefly review some of the research topics on evolutionary multi-objective optimization that are currently attracting a lot of interest (e.g., indicator-based selection, many-objective optimization and use of surrogates) and which represent good opportunities for doing research. Some of the challenges currently faced by this discipline will also be delineated.", 
    "editor": [
      {
        "familyName": "Mart\u00edn-Vide", 
        "givenName": "Carlos", 
        "type": "Person"
      }, 
      {
        "familyName": "Neruda", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Vega-Rodr\u00edguez", 
        "givenName": "Miguel A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-71069-3_1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-71068-6", 
        "978-3-319-71069-3"
      ], 
      "name": "Theory and Practice of Natural Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "evolutionary multi-objective optimization", 
      "multi-objective optimization", 
      "evolutionary multiobjective optimization", 
      "more objectives", 
      "multiobjective optimization", 
      "evolutionary algorithm", 
      "open problem", 
      "recent results", 
      "optimization", 
      "popular choice", 
      "EMOO", 
      "problem", 
      "PhD thesis", 
      "algorithm", 
      "interesting research", 
      "research topic", 
      "choice", 
      "sufficient value", 
      "objective", 
      "way", 
      "interest", 
      "results", 
      "topic", 
      "disciplines", 
      "values", 
      "research", 
      "contribution", 
      "challenges", 
      "thesis", 
      "area", 
      "important growth", 
      "good opportunity", 
      "opportunities", 
      "years", 
      "growth", 
      "impression", 
      "people", 
      "example", 
      "paper"
    ], 
    "name": "Recent Results and Open Problems in Evolutionary Multiobjective Optimization", 
    "pagination": "3-21", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092754934"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-71069-3_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-71069-3_1", 
      "https://app.dimensions.ai/details/publication/pub.1092754934"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_301.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-71069-3_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-71069-3_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-71069-3_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-71069-3_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-71069-3_1'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-71069-3_1 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nff6eb0f0375d48b0a17e5d4c8499b7a9
4 schema:datePublished 2017-11-19
5 schema:datePublishedReg 2017-11-19
6 schema:description Evolutionary algorithms (as well as a number of other metaheuristics) have become a popular choice for solving problems having two or more (often conflicting) objectives (the so-called multi-objective optimization problems). This area, known as EMOO (Evolutionary Multi-Objective Optimization) has had an important growth in the last 20 years, and several people (particularly newcomers) get the impression that it is now very difficult to make contributions of sufficient value to justify, for example, a PhD thesis. However, a lot of interesting research is still under way. In this paper, we will briefly review some of the research topics on evolutionary multi-objective optimization that are currently attracting a lot of interest (e.g., indicator-based selection, many-objective optimization and use of surrogates) and which represent good opportunities for doing research. Some of the challenges currently faced by this discipline will also be delineated.
7 schema:editor N99a855a43f8c44dfbc8f6f3178452279
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbad466a9bb154c3ca7080fc017d2bd98
12 schema:keywords EMOO
13 PhD thesis
14 algorithm
15 area
16 challenges
17 choice
18 contribution
19 disciplines
20 evolutionary algorithm
21 evolutionary multi-objective optimization
22 evolutionary multiobjective optimization
23 example
24 good opportunity
25 growth
26 important growth
27 impression
28 interest
29 interesting research
30 more objectives
31 multi-objective optimization
32 multiobjective optimization
33 objective
34 open problem
35 opportunities
36 optimization
37 paper
38 people
39 popular choice
40 problem
41 recent results
42 research
43 research topic
44 results
45 sufficient value
46 thesis
47 topic
48 values
49 way
50 years
51 schema:name Recent Results and Open Problems in Evolutionary Multiobjective Optimization
52 schema:pagination 3-21
53 schema:productId N49bafc147db9436c86a95ba2e77286df
54 N8ccb7ed189a14b16bd6cb29a06e49f2a
55 schema:publisher Nfb0762a3e0f74c08a100feb68363104a
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092754934
57 https://doi.org/10.1007/978-3-319-71069-3_1
58 schema:sdDatePublished 2021-11-01T18:54
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7c1ac4ef49f44e78a6b245cedb27ceb4
61 schema:url https://doi.org/10.1007/978-3-319-71069-3_1
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N3aa44c60a6fa4fbba7c34fe58bb6a683 rdf:first Ne84e91f76afe4170bbb8b434414c5a68
66 rdf:rest rdf:nil
67 N49bafc147db9436c86a95ba2e77286df schema:name dimensions_id
68 schema:value pub.1092754934
69 rdf:type schema:PropertyValue
70 N7c1ac4ef49f44e78a6b245cedb27ceb4 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N7d99bb3b517a47028f87c928b7e96524 schema:familyName Neruda
73 schema:givenName Roman
74 rdf:type schema:Person
75 N8ccb7ed189a14b16bd6cb29a06e49f2a schema:name doi
76 schema:value 10.1007/978-3-319-71069-3_1
77 rdf:type schema:PropertyValue
78 N99a855a43f8c44dfbc8f6f3178452279 rdf:first Ncb16f4689f15492f8bc447d5e0689136
79 rdf:rest Nd68860bbdb754d0da7be76dba57e2475
80 Nbad466a9bb154c3ca7080fc017d2bd98 schema:isbn 978-3-319-71068-6
81 978-3-319-71069-3
82 schema:name Theory and Practice of Natural Computing
83 rdf:type schema:Book
84 Ncb16f4689f15492f8bc447d5e0689136 schema:familyName Martín-Vide
85 schema:givenName Carlos
86 rdf:type schema:Person
87 Nd68860bbdb754d0da7be76dba57e2475 rdf:first N7d99bb3b517a47028f87c928b7e96524
88 rdf:rest N3aa44c60a6fa4fbba7c34fe58bb6a683
89 Ne84e91f76afe4170bbb8b434414c5a68 schema:familyName Vega-Rodríguez
90 schema:givenName Miguel A.
91 rdf:type schema:Person
92 Nfb0762a3e0f74c08a100feb68363104a schema:name Springer Nature
93 rdf:type schema:Organisation
94 Nff6eb0f0375d48b0a17e5d4c8499b7a9 rdf:first sg:person.01345625161.61
95 rdf:rest rdf:nil
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
100 schema:name Numerical and Computational Mathematics
101 rdf:type schema:DefinedTerm
102 sg:person.01345625161.61 schema:affiliation grid-institutes:grid.418275.d
103 schema:familyName Coello Coello
104 schema:givenName Carlos A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345625161.61
106 rdf:type schema:Person
107 grid-institutes:grid.418275.d schema:alternateName Evolutionary Computation Group, Departamento de Computación, CINVESTAV, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico D.F., Mexico
108 schema:name Evolutionary Computation Group, Departamento de Computación, CINVESTAV, Av. IPN No. 2508, Col. San Pedro Zacatenco, 07360, Mexico D.F., Mexico
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...