Estimation of Practical Significance for Application of Composite Pipes in Comparison with Metal and Polymer Materials View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-12-19

AUTHORS

Konstantin Strogonov , Alexander Fedyukhin , Tatiana Stepanova , Oleg Derevianko

ABSTRACT

In recent years, highly efficient pre-insulated pipes, made of heat-resistant polymer (usually polyethylene) materials are used during the reconstruction and repair of heat networks. Their advantage is the convenience and ease of installation, long service life, corrosion protection. This material is often used for internal heating circuits when water temperature is up to 95 °C and pressure is up to 1.6 MPa due to limitations of the physico-chemical properties of the material. At the same time for manufacturing of modern, highly efficient and durable pipe system, depending on destination, location and method of installation various composite materials: basalt, glass or carbon fiber; synthetic fiber; rubber, fluoropolymers and others can be used. High specific strength and stiffness of fibrous composite materials, along with chemical stability, relatively low weight and other properties make these materials attractive for the manufacture of pipes for various purposes. The advantages of using pipelines made of composite materials is to increase the estimated service life of heat networks in two times in comparison with metal pipes, reducing the hydraulic and thermal losses due to the physico-chemical properties of the material, and also lower labor and financial costs for the construction of heating mains. More... »

PAGES

1024-1035

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-70987-1_111

DOI

http://dx.doi.org/10.1007/978-3-319-70987-1_111

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099714867


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strogonov", 
        "givenName": "Konstantin", 
        "id": "sg:person.011236363704.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236363704.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedyukhin", 
        "givenName": "Alexander", 
        "id": "sg:person.07667612025.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667612025.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77852.3f", 
          "name": [
            "National Research University \u201cMoscow Power Engineering Institute\u201d, Krasnokazarmennaya 14, 111250, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepanova", 
        "givenName": "Tatiana", 
        "id": "sg:person.015054162206.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054162206.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Saint Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.32495.39", 
          "name": [
            "Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Saint Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derevianko", 
        "givenName": "Oleg", 
        "id": "sg:person.015021646304.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021646304.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-12-19", 
    "datePublishedReg": "2017-12-19", 
    "description": "In recent years, highly efficient pre-insulated pipes, made of heat-resistant polymer (usually polyethylene) materials are used during the reconstruction and repair of heat networks. Their advantage is the convenience and ease of installation, long service life, corrosion protection. This material is often used for internal heating circuits when water temperature is up to 95\u00a0\u00b0C and pressure is up to 1.6\u00a0MPa due to limitations of the physico-chemical properties of the material. At the same time for manufacturing of modern, highly efficient and durable pipe system, depending on destination, location and method of installation various composite materials: basalt, glass or carbon fiber; synthetic fiber; rubber, fluoropolymers and others can be used. High specific strength and stiffness of fibrous composite materials, along with chemical stability, relatively low weight and other properties make these materials attractive for the manufacture of pipes for various purposes. The advantages of using pipelines made of composite materials is to increase the estimated service life of heat networks in two times in comparison with metal pipes, reducing the hydraulic and thermal losses due to the physico-chemical properties of the material, and also lower labor and financial costs for the construction of heating mains.", 
    "editor": [
      {
        "familyName": "Murgul", 
        "givenName": "Vera", 
        "type": "Person"
      }, 
      {
        "familyName": "Popovic", 
        "givenName": "Zdenka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-70987-1_111", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-70986-4", 
        "978-3-319-70987-1"
      ], 
      "name": "International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "physico-chemical properties", 
      "composite materials", 
      "polymer materials", 
      "heat networks", 
      "service life", 
      "high specific strength", 
      "manufacture of pipes", 
      "fibrous composite materials", 
      "chemical stability", 
      "long service life", 
      "method of installation", 
      "pre-insulated pipes", 
      "corrosion protection", 
      "ease of installation", 
      "composite pipes", 
      "heating circuit", 
      "pipe system", 
      "thermal losses", 
      "metal pipes", 
      "heating mains", 
      "carbon fiber", 
      "specific strength", 
      "synthetic fibers", 
      "pipe", 
      "materials", 
      "properties", 
      "installation", 
      "fluoropolymers", 
      "low weight", 
      "water temperature", 
      "metals", 
      "MPa", 
      "lower labor", 
      "fibers", 
      "manufacturing", 
      "rubber", 
      "stiffness", 
      "practical significance", 
      "stability", 
      "manufacture", 
      "glass", 
      "circuit", 
      "advantages", 
      "temperature", 
      "strength", 
      "pipeline", 
      "same time", 
      "applications", 
      "estimation", 
      "recent years", 
      "pressure", 
      "network", 
      "comparison", 
      "cost", 
      "time", 
      "construction", 
      "system", 
      "method", 
      "ease", 
      "location", 
      "limitations", 
      "weight", 
      "loss", 
      "reconstruction", 
      "convenience", 
      "financial costs", 
      "protection", 
      "purpose", 
      "life", 
      "repair", 
      "MAIN", 
      "destination", 
      "basalts", 
      "significance", 
      "years", 
      "labor"
    ], 
    "name": "Estimation of Practical Significance for Application of Composite Pipes in Comparison with Metal and Polymer Materials", 
    "pagination": "1024-1035", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099714867"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-70987-1_111"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-70987-1_111", 
      "https://app.dimensions.ai/details/publication/pub.1099714867"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_87.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-70987-1_111"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70987-1_111'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70987-1_111'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70987-1_111'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70987-1_111'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      102 URIs      93 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-70987-1_111 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Ndfea8584a444448d9fdf61fc65a30737
6 schema:datePublished 2017-12-19
7 schema:datePublishedReg 2017-12-19
8 schema:description In recent years, highly efficient pre-insulated pipes, made of heat-resistant polymer (usually polyethylene) materials are used during the reconstruction and repair of heat networks. Their advantage is the convenience and ease of installation, long service life, corrosion protection. This material is often used for internal heating circuits when water temperature is up to 95 °C and pressure is up to 1.6 MPa due to limitations of the physico-chemical properties of the material. At the same time for manufacturing of modern, highly efficient and durable pipe system, depending on destination, location and method of installation various composite materials: basalt, glass or carbon fiber; synthetic fiber; rubber, fluoropolymers and others can be used. High specific strength and stiffness of fibrous composite materials, along with chemical stability, relatively low weight and other properties make these materials attractive for the manufacture of pipes for various purposes. The advantages of using pipelines made of composite materials is to increase the estimated service life of heat networks in two times in comparison with metal pipes, reducing the hydraulic and thermal losses due to the physico-chemical properties of the material, and also lower labor and financial costs for the construction of heating mains.
9 schema:editor N27a6682976b0428d9fd1f2cbe8709513
10 schema:genre chapter
11 schema:isAccessibleForFree false
12 schema:isPartOf Ne3a71f119199408a88095301fc7c9a12
13 schema:keywords MAIN
14 MPa
15 advantages
16 applications
17 basalts
18 carbon fiber
19 chemical stability
20 circuit
21 comparison
22 composite materials
23 composite pipes
24 construction
25 convenience
26 corrosion protection
27 cost
28 destination
29 ease
30 ease of installation
31 estimation
32 fibers
33 fibrous composite materials
34 financial costs
35 fluoropolymers
36 glass
37 heat networks
38 heating circuit
39 heating mains
40 high specific strength
41 installation
42 labor
43 life
44 limitations
45 location
46 long service life
47 loss
48 low weight
49 lower labor
50 manufacture
51 manufacture of pipes
52 manufacturing
53 materials
54 metal pipes
55 metals
56 method
57 method of installation
58 network
59 physico-chemical properties
60 pipe
61 pipe system
62 pipeline
63 polymer materials
64 practical significance
65 pre-insulated pipes
66 pressure
67 properties
68 protection
69 purpose
70 recent years
71 reconstruction
72 repair
73 rubber
74 same time
75 service life
76 significance
77 specific strength
78 stability
79 stiffness
80 strength
81 synthetic fibers
82 system
83 temperature
84 thermal losses
85 time
86 water temperature
87 weight
88 years
89 schema:name Estimation of Practical Significance for Application of Composite Pipes in Comparison with Metal and Polymer Materials
90 schema:pagination 1024-1035
91 schema:productId N670c0ba7a274489487249c048c994709
92 Nfe0afcc918f44a1492204c7484d6c9bc
93 schema:publisher Nb61beff85001433c8ec59c5029370bb6
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099714867
95 https://doi.org/10.1007/978-3-319-70987-1_111
96 schema:sdDatePublished 2022-09-02T16:19
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N9a2a4cfdd3634c13a58ca2d5c9001b4b
99 schema:url https://doi.org/10.1007/978-3-319-70987-1_111
100 sgo:license sg:explorer/license/
101 sgo:sdDataset chapters
102 rdf:type schema:Chapter
103 N27a6682976b0428d9fd1f2cbe8709513 rdf:first N610c43f94fe14d1b988da3e89e5a71bb
104 rdf:rest N826a468ea6fb4dd39fa7651466f1fc4a
105 N610c43f94fe14d1b988da3e89e5a71bb schema:familyName Murgul
106 schema:givenName Vera
107 rdf:type schema:Person
108 N670c0ba7a274489487249c048c994709 schema:name doi
109 schema:value 10.1007/978-3-319-70987-1_111
110 rdf:type schema:PropertyValue
111 N79415bc1617f41b9a6e4c23c1375b23a rdf:first sg:person.015054162206.61
112 rdf:rest Nbe03237dc19342248ee21b03df000322
113 N826a468ea6fb4dd39fa7651466f1fc4a rdf:first Na9308c2f190947858abbf81fb39f9573
114 rdf:rest rdf:nil
115 N9a2a4cfdd3634c13a58ca2d5c9001b4b schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Na9308c2f190947858abbf81fb39f9573 schema:familyName Popovic
118 schema:givenName Zdenka
119 rdf:type schema:Person
120 Nb61beff85001433c8ec59c5029370bb6 schema:name Springer Nature
121 rdf:type schema:Organisation
122 Nbe03237dc19342248ee21b03df000322 rdf:first sg:person.015021646304.23
123 rdf:rest rdf:nil
124 Ndfea8584a444448d9fdf61fc65a30737 rdf:first sg:person.011236363704.75
125 rdf:rest Ne82febb9620549ec8317f14a61a55ec7
126 Ne3a71f119199408a88095301fc7c9a12 schema:isbn 978-3-319-70986-4
127 978-3-319-70987-1
128 schema:name International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017
129 rdf:type schema:Book
130 Ne82febb9620549ec8317f14a61a55ec7 rdf:first sg:person.07667612025.15
131 rdf:rest N79415bc1617f41b9a6e4c23c1375b23a
132 Nfe0afcc918f44a1492204c7484d6c9bc schema:name dimensions_id
133 schema:value pub.1099714867
134 rdf:type schema:PropertyValue
135 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
136 schema:name Chemical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
139 schema:name Macromolecular and Materials Chemistry
140 rdf:type schema:DefinedTerm
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
145 schema:name Materials Engineering
146 rdf:type schema:DefinedTerm
147 sg:person.011236363704.75 schema:affiliation grid-institutes:grid.77852.3f
148 schema:familyName Strogonov
149 schema:givenName Konstantin
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236363704.75
151 rdf:type schema:Person
152 sg:person.015021646304.23 schema:affiliation grid-institutes:grid.32495.39
153 schema:familyName Derevianko
154 schema:givenName Oleg
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021646304.23
156 rdf:type schema:Person
157 sg:person.015054162206.61 schema:affiliation grid-institutes:grid.77852.3f
158 schema:familyName Stepanova
159 schema:givenName Tatiana
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015054162206.61
161 rdf:type schema:Person
162 sg:person.07667612025.15 schema:affiliation grid-institutes:grid.77852.3f
163 schema:familyName Fedyukhin
164 schema:givenName Alexander
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667612025.15
166 rdf:type schema:Person
167 grid-institutes:grid.32495.39 schema:alternateName Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Saint Petersburg, Russia
168 schema:name Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, Saint Petersburg, Russia
169 rdf:type schema:Organization
170 grid-institutes:grid.77852.3f schema:alternateName National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, 111250, Moscow, Russia
171 schema:name National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, 111250, Moscow, Russia
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...