Oblivious Hashing Revisited, and Applications to Asymptotically Efficient ORAM and OPRAM View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-11-30

AUTHORS

T.-H. Hubert Chan , Yue Guo , Wei-Kai Lin , Elaine Shi

ABSTRACT

Oblivious RAM (ORAM) is a powerful cryptographic building block that allows a program to provably hide its access patterns to sensitive data. Since the original proposal of ORAM by Goldreich and Ostrovsky, numerous improvements have been made. To date, the best asymptotic overhead achievable for general block sizes is O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}, due to an elegant scheme by Kushilevitz et al., which in turn relies on the oblivious Cuckoo hashing scheme by Goodrich and Mitzenmacher.In this paper, we make the following contributions: we first revisit the prior O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}-overhead ORAM result. We demonstrate the somewhat incompleteness of this prior result, due to the subtle incompleteness of a core building block, namely, Goodrich and Mitzenmacher’s oblivious Cuckoo hashing scheme.Even though we do show how to patch the prior result such that we can fully realize Goodrich and Mitzenmacher’s elegant blueprint for oblivious Cuckoo hashing, it is clear that the extreme complexity of oblivious Cuckoo hashing has made understanding, implementation, and proofs difficult. We show that there is a conceptually simple O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}-overhead ORAM that dispenses with oblivious Cuckoo hashing entirely.We show that such a conceptually simple scheme lends to further extensions. Specifically, we obtain the first O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document} Oblivious Parallel RAM (OPRAM) scheme, thus not only matching the performance of the best known sequential ORAM, but also achieving super-logarithmic improvements in comparison with known OPRAM schemes. More... »

PAGES

660-690

Book

TITLE

Advances in Cryptology – ASIACRYPT 2017

ISBN

978-3-319-70693-1
978-3-319-70694-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-70694-8_23

DOI

http://dx.doi.org/10.1007/978-3-319-70694-8_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093075399


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Hong Kong, Pokfulam, Hong Kong", 
          "id": "http://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "The University of Hong Kong, Pokfulam, Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "T.-H. Hubert", 
        "id": "sg:person.010251411300.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251411300.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University, Ithaca, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, Ithaca, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yue", 
        "id": "sg:person.015432733725.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015432733725.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University, Ithaca, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, Ithaca, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Wei-Kai", 
        "id": "sg:person.015030115735.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030115735.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University, Ithaca, USA", 
          "id": "http://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Cornell University, Ithaca, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Elaine", 
        "id": "sg:person.014706274717.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706274717.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-11-30", 
    "datePublishedReg": "2017-11-30", 
    "description": "Oblivious RAM (ORAM) is a powerful cryptographic building block that allows a program to provably hide its access patterns to sensitive data. Since the original proposal of ORAM by Goldreich and Ostrovsky, numerous improvements have been made. To date, the best asymptotic overhead achievable for general block sizes is O(log2N/loglogN)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(\\log ^2 N/\\log \\log N)$$\\end{document}, due to an elegant scheme by Kushilevitz et al., which in turn relies on the oblivious Cuckoo hashing scheme by Goodrich and Mitzenmacher.In this paper, we make the following contributions: we first revisit the prior O(log2N/loglogN)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(\\log ^2 N/\\log \\log N)$$\\end{document}-overhead ORAM result. We demonstrate the somewhat incompleteness of this prior result, due to the subtle incompleteness of a core building block, namely, Goodrich and Mitzenmacher\u2019s oblivious Cuckoo hashing scheme.Even though we do show how to patch the prior result such that we can fully realize Goodrich and Mitzenmacher\u2019s elegant blueprint for oblivious Cuckoo hashing, it is clear that the extreme complexity of oblivious Cuckoo hashing has made understanding, implementation, and proofs difficult. We show that there is a conceptually simple O(log2N/loglogN)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(\\log ^2 N/\\log \\log N)$$\\end{document}-overhead ORAM that dispenses with oblivious Cuckoo hashing entirely.We show that such a conceptually simple scheme lends to further extensions. Specifically, we obtain the first O(log2N/loglogN)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$O(\\log ^2 N/\\log \\log N)$$\\end{document} Oblivious Parallel RAM (OPRAM) scheme, thus not only matching the performance of the best known sequential ORAM, but also achieving super-logarithmic improvements in comparison with known OPRAM schemes.", 
    "editor": [
      {
        "familyName": "Takagi", 
        "givenName": "Tsuyoshi", 
        "type": "Person"
      }, 
      {
        "familyName": "Peyrin", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-70694-8_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-70693-1", 
        "978-3-319-70694-8"
      ], 
      "name": "Advances in Cryptology \u2013 ASIACRYPT 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "improvement", 
      "prior results", 
      "date", 
      "results", 
      "block", 
      "program", 
      "patterns", 
      "data", 
      "numerous improvements", 
      "lends", 
      "comparison", 
      "understanding", 
      "rams", 
      "size", 
      "et al", 
      "turn", 
      "contribution", 
      "extreme complexity", 
      "extension", 
      "original proposal", 
      "blueprint", 
      "implementation", 
      "proof", 
      "further extension", 
      "Revisited", 
      "dispenses", 
      "proposal", 
      "al", 
      "incompleteness", 
      "complexity", 
      "performance", 
      "applications", 
      "block size", 
      "cuckoos", 
      "Goodrich", 
      "paper", 
      "building blocks", 
      "scheme", 
      "Mitzenmacher", 
      "core building blocks", 
      "Oblivious RAM", 
      "sensitive data", 
      "cryptographic building blocks", 
      "access patterns", 
      "Goldreich", 
      "Ostrovsky", 
      "asymptotic overhead", 
      "overhead", 
      "elegant scheme", 
      "following contributions", 
      "cuckoo hashing", 
      "hashing", 
      "RAM scheme", 
      "OPRAM scheme", 
      "powerful cryptographic building block", 
      "best asymptotic overhead", 
      "general block sizes", 
      "Kushilevitz et al", 
      "oblivious Cuckoo", 
      "ORAM result", 
      "subtle incompleteness", 
      "Mitzenmacher\u2019s oblivious Cuckoo", 
      "Mitzenmacher\u2019s elegant blueprint", 
      "\u2019s elegant blueprint", 
      "oblivious Cuckoo hashing", 
      "simple scheme lends", 
      "scheme lends", 
      "Oblivious Parallel RAM (OPRAM) scheme", 
      "Parallel RAM (OPRAM) scheme", 
      "sequential ORAM", 
      "super-logarithmic improvements", 
      "Oblivious Hashing Revisited", 
      "Hashing Revisited", 
      "Efficient ORAM", 
      "OPRAM"
    ], 
    "name": "Oblivious Hashing Revisited, and Applications to Asymptotically Efficient ORAM and OPRAM", 
    "pagination": "660-690", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093075399"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-70694-8_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-70694-8_23", 
      "https://app.dimensions.ai/details/publication/pub.1093075399"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_146.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-70694-8_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70694-8_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70694-8_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70694-8_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70694-8_23'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      100 URIs      93 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-70694-8_23 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nc7706da6455147f889e2d8ce8ea2e9fd
4 schema:datePublished 2017-11-30
5 schema:datePublishedReg 2017-11-30
6 schema:description Oblivious RAM (ORAM) is a powerful cryptographic building block that allows a program to provably hide its access patterns to sensitive data. Since the original proposal of ORAM by Goldreich and Ostrovsky, numerous improvements have been made. To date, the best asymptotic overhead achievable for general block sizes is O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}, due to an elegant scheme by Kushilevitz et al., which in turn relies on the oblivious Cuckoo hashing scheme by Goodrich and Mitzenmacher.In this paper, we make the following contributions: we first revisit the prior O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}-overhead ORAM result. We demonstrate the somewhat incompleteness of this prior result, due to the subtle incompleteness of a core building block, namely, Goodrich and Mitzenmacher’s oblivious Cuckoo hashing scheme.Even though we do show how to patch the prior result such that we can fully realize Goodrich and Mitzenmacher’s elegant blueprint for oblivious Cuckoo hashing, it is clear that the extreme complexity of oblivious Cuckoo hashing has made understanding, implementation, and proofs difficult. We show that there is a conceptually simple O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document}-overhead ORAM that dispenses with oblivious Cuckoo hashing entirely.We show that such a conceptually simple scheme lends to further extensions. Specifically, we obtain the first O(log2N/loglogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^2 N/\log \log N)$$\end{document} Oblivious Parallel RAM (OPRAM) scheme, thus not only matching the performance of the best known sequential ORAM, but also achieving super-logarithmic improvements in comparison with known OPRAM schemes.
7 schema:editor N0a1340f66b414e668fcda6036efb6bd9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3ce460619e7c4a698d13375a408749cc
12 schema:keywords Efficient ORAM
13 Goldreich
14 Goodrich
15 Hashing Revisited
16 Kushilevitz et al
17 Mitzenmacher
18 Mitzenmacher’s elegant blueprint
19 Mitzenmacher’s oblivious Cuckoo
20 OPRAM
21 OPRAM scheme
22 ORAM result
23 Oblivious Hashing Revisited
24 Oblivious Parallel RAM (OPRAM) scheme
25 Oblivious RAM
26 Ostrovsky
27 Parallel RAM (OPRAM) scheme
28 RAM scheme
29 Revisited
30 access patterns
31 al
32 applications
33 asymptotic overhead
34 best asymptotic overhead
35 block
36 block size
37 blueprint
38 building blocks
39 comparison
40 complexity
41 contribution
42 core building blocks
43 cryptographic building blocks
44 cuckoo hashing
45 cuckoos
46 data
47 date
48 dispenses
49 elegant scheme
50 et al
51 extension
52 extreme complexity
53 following contributions
54 further extension
55 general block sizes
56 hashing
57 implementation
58 improvement
59 incompleteness
60 lends
61 numerous improvements
62 oblivious Cuckoo
63 oblivious Cuckoo hashing
64 original proposal
65 overhead
66 paper
67 patterns
68 performance
69 powerful cryptographic building block
70 prior results
71 program
72 proof
73 proposal
74 rams
75 results
76 scheme
77 scheme lends
78 sensitive data
79 sequential ORAM
80 simple scheme lends
81 size
82 subtle incompleteness
83 super-logarithmic improvements
84 turn
85 understanding
86 ’s elegant blueprint
87 schema:name Oblivious Hashing Revisited, and Applications to Asymptotically Efficient ORAM and OPRAM
88 schema:pagination 660-690
89 schema:productId N69f24caa00624efdae57f87d07d3c7cb
90 N6d66ae23030b4d12a5363b4d0d9be388
91 schema:publisher Nbdd35375b4964813b7043d5ea478f7b6
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093075399
93 https://doi.org/10.1007/978-3-319-70694-8_23
94 schema:sdDatePublished 2021-12-01T19:56
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N57032abdee3c4ef3bc9fd1d46c21ef32
97 schema:url https://doi.org/10.1007/978-3-319-70694-8_23
98 sgo:license sg:explorer/license/
99 sgo:sdDataset chapters
100 rdf:type schema:Chapter
101 N0a1340f66b414e668fcda6036efb6bd9 rdf:first N82823b11885740b7b6255f48f79384fe
102 rdf:rest N4f2064e4022c4ec7856429544865a59b
103 N3ce460619e7c4a698d13375a408749cc schema:isbn 978-3-319-70693-1
104 978-3-319-70694-8
105 schema:name Advances in Cryptology – ASIACRYPT 2017
106 rdf:type schema:Book
107 N438032e37bd044289907ab12af5e3ed5 rdf:first sg:person.015432733725.83
108 rdf:rest N46732afd3baf4e62848fbc06090889eb
109 N46732afd3baf4e62848fbc06090889eb rdf:first sg:person.015030115735.91
110 rdf:rest Ncdd438305a7d476895cd3027a2ccb017
111 N4f2064e4022c4ec7856429544865a59b rdf:first Na3a49f42518b44c1bd41484add5fb323
112 rdf:rest rdf:nil
113 N57032abdee3c4ef3bc9fd1d46c21ef32 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N69f24caa00624efdae57f87d07d3c7cb schema:name doi
116 schema:value 10.1007/978-3-319-70694-8_23
117 rdf:type schema:PropertyValue
118 N6d66ae23030b4d12a5363b4d0d9be388 schema:name dimensions_id
119 schema:value pub.1093075399
120 rdf:type schema:PropertyValue
121 N82823b11885740b7b6255f48f79384fe schema:familyName Takagi
122 schema:givenName Tsuyoshi
123 rdf:type schema:Person
124 Na3a49f42518b44c1bd41484add5fb323 schema:familyName Peyrin
125 schema:givenName Thomas
126 rdf:type schema:Person
127 Nbdd35375b4964813b7043d5ea478f7b6 schema:name Springer Nature
128 rdf:type schema:Organisation
129 Nc7706da6455147f889e2d8ce8ea2e9fd rdf:first sg:person.010251411300.37
130 rdf:rest N438032e37bd044289907ab12af5e3ed5
131 Ncdd438305a7d476895cd3027a2ccb017 rdf:first sg:person.014706274717.52
132 rdf:rest rdf:nil
133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
134 schema:name Information and Computing Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
137 schema:name Data Format
138 rdf:type schema:DefinedTerm
139 sg:person.010251411300.37 schema:affiliation grid-institutes:grid.194645.b
140 schema:familyName Chan
141 schema:givenName T.-H. Hubert
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010251411300.37
143 rdf:type schema:Person
144 sg:person.014706274717.52 schema:affiliation grid-institutes:grid.5386.8
145 schema:familyName Shi
146 schema:givenName Elaine
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014706274717.52
148 rdf:type schema:Person
149 sg:person.015030115735.91 schema:affiliation grid-institutes:grid.5386.8
150 schema:familyName Lin
151 schema:givenName Wei-Kai
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015030115735.91
153 rdf:type schema:Person
154 sg:person.015432733725.83 schema:affiliation grid-institutes:grid.5386.8
155 schema:familyName Guo
156 schema:givenName Yue
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015432733725.83
158 rdf:type schema:Person
159 grid-institutes:grid.194645.b schema:alternateName The University of Hong Kong, Pokfulam, Hong Kong
160 schema:name The University of Hong Kong, Pokfulam, Hong Kong
161 rdf:type schema:Organization
162 grid-institutes:grid.5386.8 schema:alternateName Cornell University, Ithaca, USA
163 schema:name Cornell University, Ithaca, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...