On Zero-Testable Homomorphic Encryption and Publicly Verifiable Non-interactive Arguments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-11-05

AUTHORS

Omer Paneth , Guy N. Rothblum

ABSTRACT

We define and study zero-testable homomorphic encryption (ZTHE) – a semantically secure, somewhat homomorphic encryption scheme equipped with a weak zero test that can identify trivial zeros. These are ciphertexts that result from homomorphically evaluating an arithmetic circuit computing the zero polynomial over the integers. This is a relaxation of the (strong) zero test provided by the notion of graded encodings, which identifies all encodings of zero.We show that ZTHE can suffice for powerful applications. Based on any ZTHE scheme that satisfies the additional properties of correctness on adversarial ciphertexts and multi-key homomorphism, we construct publicly verifiable non-interactive arguments for delegating computation. Such arguments were previously constructed from indistinguishability obfuscation or based on so-called knowledge assumptions. The arguments we construct are adaptively sound, based on an efficiently falsifiable assumption, and only make black-box use of the underlying cryptographic primitives.We also show that a ZTHE scheme that is sufficient for our application can be constructed based on an efficiently-falsifiable assumption over so-called “clean” graded encodings. More... »

PAGES

283-315

Book

TITLE

Theory of Cryptography

ISBN

978-3-319-70502-6
978-3-319-70503-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-70503-3_9

DOI

http://dx.doi.org/10.1007/978-3-319-70503-3_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092520045


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MIT, Cambridge, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MIT, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paneth", 
        "givenName": "Omer", 
        "id": "sg:person.014073524511.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science, Rehovot, Israel", 
          "id": "http://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Weizmann Institute of Science, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rothblum", 
        "givenName": "Guy N.", 
        "id": "sg:person.014351474277.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014351474277.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-11-05", 
    "datePublishedReg": "2017-11-05", 
    "description": "We define and study zero-testable homomorphic encryption (ZTHE) \u2013 a semantically secure, somewhat homomorphic encryption scheme equipped with a weak zero test that can identify trivial zeros. These are ciphertexts that result from homomorphically evaluating an arithmetic circuit computing the zero polynomial over the integers. This is a relaxation of the (strong) zero test provided by the notion of graded encodings, which identifies all encodings of zero.We show that ZTHE can suffice for powerful applications. Based on any ZTHE scheme that satisfies the additional properties of correctness on adversarial ciphertexts and multi-key homomorphism, we construct publicly verifiable non-interactive arguments for delegating computation. Such arguments were previously constructed from indistinguishability obfuscation or based on so-called knowledge assumptions. The arguments we construct are adaptively sound, based on an efficiently falsifiable assumption, and only make black-box use of the underlying cryptographic primitives.We also show that a ZTHE scheme that is sufficient for our application can be constructed based on an efficiently-falsifiable assumption over so-called \u201cclean\u201d graded encodings.", 
    "editor": [
      {
        "familyName": "Kalai", 
        "givenName": "Yael", 
        "type": "Person"
      }, 
      {
        "familyName": "Reyzin", 
        "givenName": "Leonid", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-70503-3_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-70502-6", 
        "978-3-319-70503-3"
      ], 
      "name": "Theory of Cryptography", 
      "type": "Book"
    }, 
    "keywords": [
      "non-interactive arguments", 
      "homomorphic encryption", 
      "homomorphic encryption scheme", 
      "black-box use", 
      "falsifiable assumptions", 
      "encryption scheme", 
      "cryptographic primitives", 
      "indistinguishability obfuscation", 
      "knowledge assumptions", 
      "encryption", 
      "ciphertext", 
      "powerful applications", 
      "arithmetic circuits", 
      "encoding", 
      "scheme", 
      "primitives", 
      "obfuscation", 
      "correctness", 
      "applications", 
      "computation", 
      "additional properties", 
      "assumption", 
      "integers", 
      "notion", 
      "homomorphism", 
      "use", 
      "polynomials", 
      "circuit", 
      "trivial zeros", 
      "argument", 
      "zeros", 
      "such arguments", 
      "test", 
      "properties", 
      "relaxation"
    ], 
    "name": "On Zero-Testable Homomorphic Encryption and Publicly Verifiable Non-interactive Arguments", 
    "pagination": "283-315", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092520045"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-70503-3_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-70503-3_9", 
      "https://app.dimensions.ai/details/publication/pub.1092520045"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_439.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-70503-3_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70503-3_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70503-3_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70503-3_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70503-3_9'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-70503-3_9 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N3676b3cbfe1c4d398cd1c915a5889387
4 schema:datePublished 2017-11-05
5 schema:datePublishedReg 2017-11-05
6 schema:description We define and study zero-testable homomorphic encryption (ZTHE) – a semantically secure, somewhat homomorphic encryption scheme equipped with a weak zero test that can identify trivial zeros. These are ciphertexts that result from homomorphically evaluating an arithmetic circuit computing the zero polynomial over the integers. This is a relaxation of the (strong) zero test provided by the notion of graded encodings, which identifies all encodings of zero.We show that ZTHE can suffice for powerful applications. Based on any ZTHE scheme that satisfies the additional properties of correctness on adversarial ciphertexts and multi-key homomorphism, we construct publicly verifiable non-interactive arguments for delegating computation. Such arguments were previously constructed from indistinguishability obfuscation or based on so-called knowledge assumptions. The arguments we construct are adaptively sound, based on an efficiently falsifiable assumption, and only make black-box use of the underlying cryptographic primitives.We also show that a ZTHE scheme that is sufficient for our application can be constructed based on an efficiently-falsifiable assumption over so-called “clean” graded encodings.
7 schema:editor N6d7057e8bfce4b4582733b180f69c040
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nf16b11f2913b4f438563c367a4ac145d
12 schema:keywords additional properties
13 applications
14 argument
15 arithmetic circuits
16 assumption
17 black-box use
18 ciphertext
19 circuit
20 computation
21 correctness
22 cryptographic primitives
23 encoding
24 encryption
25 encryption scheme
26 falsifiable assumptions
27 homomorphic encryption
28 homomorphic encryption scheme
29 homomorphism
30 indistinguishability obfuscation
31 integers
32 knowledge assumptions
33 non-interactive arguments
34 notion
35 obfuscation
36 polynomials
37 powerful applications
38 primitives
39 properties
40 relaxation
41 scheme
42 such arguments
43 test
44 trivial zeros
45 use
46 zeros
47 schema:name On Zero-Testable Homomorphic Encryption and Publicly Verifiable Non-interactive Arguments
48 schema:pagination 283-315
49 schema:productId N31ab5119f54f44dc8fa8f18af91ef98f
50 N997a77a088d948be9fe1056a30b34461
51 schema:publisher N38abcc930af8497396525a7539bad799
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092520045
53 https://doi.org/10.1007/978-3-319-70503-3_9
54 schema:sdDatePublished 2022-06-01T22:35
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N46c077ee4e32439f96562fde1fd884ae
57 schema:url https://doi.org/10.1007/978-3-319-70503-3_9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N10ad97f44c384514bafec9fa9ad99a39 schema:familyName Reyzin
62 schema:givenName Leonid
63 rdf:type schema:Person
64 N2d4d46cd7d514841b5139216f0e01a99 rdf:first N10ad97f44c384514bafec9fa9ad99a39
65 rdf:rest rdf:nil
66 N31ab5119f54f44dc8fa8f18af91ef98f schema:name doi
67 schema:value 10.1007/978-3-319-70503-3_9
68 rdf:type schema:PropertyValue
69 N3676b3cbfe1c4d398cd1c915a5889387 rdf:first sg:person.014073524511.68
70 rdf:rest N4b71b3f4ca484dc9a0fbdad8e354dc43
71 N38abcc930af8497396525a7539bad799 schema:name Springer Nature
72 rdf:type schema:Organisation
73 N46c077ee4e32439f96562fde1fd884ae schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N4b71b3f4ca484dc9a0fbdad8e354dc43 rdf:first sg:person.014351474277.34
76 rdf:rest rdf:nil
77 N5290bc989d85464e8818000950052bc0 schema:familyName Kalai
78 schema:givenName Yael
79 rdf:type schema:Person
80 N6d7057e8bfce4b4582733b180f69c040 rdf:first N5290bc989d85464e8818000950052bc0
81 rdf:rest N2d4d46cd7d514841b5139216f0e01a99
82 N997a77a088d948be9fe1056a30b34461 schema:name dimensions_id
83 schema:value pub.1092520045
84 rdf:type schema:PropertyValue
85 Nf16b11f2913b4f438563c367a4ac145d schema:isbn 978-3-319-70502-6
86 978-3-319-70503-3
87 schema:name Theory of Cryptography
88 rdf:type schema:Book
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
93 schema:name Data Format
94 rdf:type schema:DefinedTerm
95 sg:person.014073524511.68 schema:affiliation grid-institutes:grid.116068.8
96 schema:familyName Paneth
97 schema:givenName Omer
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014073524511.68
99 rdf:type schema:Person
100 sg:person.014351474277.34 schema:affiliation grid-institutes:grid.13992.30
101 schema:familyName Rothblum
102 schema:givenName Guy N.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014351474277.34
104 rdf:type schema:Person
105 grid-institutes:grid.116068.8 schema:alternateName MIT, Cambridge, USA
106 schema:name MIT, Cambridge, USA
107 rdf:type schema:Organization
108 grid-institutes:grid.13992.30 schema:alternateName Weizmann Institute of Science, Rehovot, Israel
109 schema:name Weizmann Institute of Science, Rehovot, Israel
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...