Boundary Interpolation by Finite Blaschke Products View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-11-08

AUTHORS

Vladimir Bolotnikov

ABSTRACT

Given n distinct points t1, …, tn on the unit circle 𝕋 and equally many target values w1,…,wn∈𝕋, we describe all Blaschke products f of degree at most n − 1 such that f(ti) = wi for i = 1, …, n. We also describe the cases where degree n − 1 is the minimal possible. More... »

PAGES

39-65

References to SciGraph publications

Book

TITLE

Complex Analysis and Dynamical Systems

ISBN

978-3-319-70153-0
978-3-319-70154-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-70154-7_3

DOI

http://dx.doi.org/10.1007/978-3-319-70154-7_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100780231


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03321625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004426410", 
          "https://doi.org/10.1007/bf03321625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-006-0646-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004702579", 
          "https://doi.org/10.1007/s00365-006-0646-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171999", 
          "https://doi.org/10.1007/bf01456817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13324-012-0050-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005331607", 
          "https://doi.org/10.1007/s13324-012-0050-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-07-09126-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010915406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1980-0553394-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014490203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03321626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021013303", 
          "https://doi.org/10.1007/bf03321626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-26.2.271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026038579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01890578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040283637", 
          "https://doi.org/10.1007/bf01890578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01890578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040283637", 
          "https://doi.org/10.1007/bf01890578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2012.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041051533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(02)00249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044241928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(02)00249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044241928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1965-0176083-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047523478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10231-010-0165-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049656861", 
          "https://doi.org/10.1007/s10231-010-0165-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/3.2-3.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.751366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.928584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061246726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0518091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847962"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-08", 
    "datePublishedReg": "2017-11-08", 
    "description": "Given n distinct points t1, \u2026, tn on the unit circle \ud835\udd4b and equally many target values w1,\u2026,wn\u2208\ud835\udd4b, we describe all Blaschke products f of degree at most n \u2212 1 such that f(ti) = wi for i = 1, \u2026, n. We also describe the cases where degree n \u2212 1 is the minimal possible.", 
    "editor": [
      {
        "familyName": "Agranovsky", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "familyName": "Golberg", 
        "givenName": "Anatoly", 
        "type": "Person"
      }, 
      {
        "familyName": "Jacobzon", 
        "givenName": "Fiana", 
        "type": "Person"
      }, 
      {
        "familyName": "Shoikhet", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Zalcman", 
        "givenName": "Lawrence", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-70154-7_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-70153-0", 
        "978-3-319-70154-7"
      ], 
      "name": "Complex Analysis and Dynamical Systems", 
      "type": "Book"
    }, 
    "name": "Boundary Interpolation by Finite Blaschke Products", 
    "pagination": "39-65", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-70154-7_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fb1181236eb00322430d054a57fe85584953c65e019bdd99e3af286ceaa92b9b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100780231"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-70154-7_3", 
      "https://app.dimensions.ai/details/publication/pub.1100780231"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100805_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-319-70154-7_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70154-7_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70154-7_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70154-7_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-70154-7_3'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      44 URIs      19 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-70154-7_3 schema:author N3d11250487ac42a3a762024fe7ecb9e8
2 schema:citation sg:pub.10.1007/978-3-0348-7709-1
3 sg:pub.10.1007/bf01238220
4 sg:pub.10.1007/bf01456817
5 sg:pub.10.1007/bf01890578
6 sg:pub.10.1007/bf03321625
7 sg:pub.10.1007/bf03321626
8 sg:pub.10.1007/s00365-006-0646-3
9 sg:pub.10.1007/s10231-010-0165-y
10 sg:pub.10.1007/s13324-012-0050-5
11 https://app.dimensions.ai/details/publication/pub.1043632982
12 https://doi.org/10.1016/j.cam.2012.02.009
13 https://doi.org/10.1016/s0022-247x(02)00249-4
14 https://doi.org/10.1090/s0002-9939-07-09126-5
15 https://doi.org/10.1090/s0002-9939-1965-0176083-2
16 https://doi.org/10.1090/s0002-9939-1980-0553394-8
17 https://doi.org/10.1093/imamci/3.2-3.61
18 https://doi.org/10.1109/9.751366
19 https://doi.org/10.1109/9.928584
20 https://doi.org/10.1112/jlms/s2-26.2.271
21 https://doi.org/10.1137/0518091
22 schema:datePublished 2017-11-08
23 schema:datePublishedReg 2017-11-08
24 schema:description Given n distinct points t1, …, tn on the unit circle 𝕋 and equally many target values w1,…,wn∈𝕋, we describe all Blaschke products f of degree at most n − 1 such that f(ti) = wi for i = 1, …, n. We also describe the cases where degree n − 1 is the minimal possible.
25 schema:editor Nf99b30c8826c4d6480b3712a4154cc78
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N8112935ac0ae445e87caa967f1ab8dba
30 schema:name Boundary Interpolation by Finite Blaschke Products
31 schema:pagination 39-65
32 schema:productId N5a4e87eb17094935871b08477706de54
33 N5b289f55232f4930a1986f07631e1ca8
34 Nd6a7fe32244b40e28554a9e6a910117b
35 schema:publisher N8ae4073c40eb4f248d1b5cedb954cbf2
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100780231
37 https://doi.org/10.1007/978-3-319-70154-7_3
38 schema:sdDatePublished 2019-04-16T05:01
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N225cbf9f801b474890bf3ea175f5bef9
41 schema:url https://link.springer.com/10.1007%2F978-3-319-70154-7_3
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N11e067ff678c49c19f28b50153dbfe36 rdf:first N1cdeb2f8e1014ab798695059d58bf575
46 rdf:rest Na87ea97f2dbf443fb965dda8df73d78b
47 N1cdeb2f8e1014ab798695059d58bf575 schema:familyName Golberg
48 schema:givenName Anatoly
49 rdf:type schema:Person
50 N225cbf9f801b474890bf3ea175f5bef9 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N24ef2b114eea439f944a5aba2121f16f schema:familyName Zalcman
53 schema:givenName Lawrence
54 rdf:type schema:Person
55 N314c92017c2f4291a045968a5aa89210 schema:familyName Jacobzon
56 schema:givenName Fiana
57 rdf:type schema:Person
58 N3b6a913e67ab43199e341b16c21b22ea rdf:first N24ef2b114eea439f944a5aba2121f16f
59 rdf:rest rdf:nil
60 N3d11250487ac42a3a762024fe7ecb9e8 rdf:first sg:person.01130533744.43
61 rdf:rest rdf:nil
62 N5a4e87eb17094935871b08477706de54 schema:name dimensions_id
63 schema:value pub.1100780231
64 rdf:type schema:PropertyValue
65 N5b289f55232f4930a1986f07631e1ca8 schema:name readcube_id
66 schema:value fb1181236eb00322430d054a57fe85584953c65e019bdd99e3af286ceaa92b9b
67 rdf:type schema:PropertyValue
68 N8112935ac0ae445e87caa967f1ab8dba schema:isbn 978-3-319-70153-0
69 978-3-319-70154-7
70 schema:name Complex Analysis and Dynamical Systems
71 rdf:type schema:Book
72 N8ae4073c40eb4f248d1b5cedb954cbf2 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 N959c589b8e724f779433d97b9b22d59c schema:familyName Agranovsky
76 schema:givenName Mark
77 rdf:type schema:Person
78 Na4b731299f6949208680d63e5a017570 schema:familyName Shoikhet
79 schema:givenName David
80 rdf:type schema:Person
81 Na87ea97f2dbf443fb965dda8df73d78b rdf:first N314c92017c2f4291a045968a5aa89210
82 rdf:rest Nef47dcaf89034a20a0a0cd42ab20d150
83 Nd6a7fe32244b40e28554a9e6a910117b schema:name doi
84 schema:value 10.1007/978-3-319-70154-7_3
85 rdf:type schema:PropertyValue
86 Nef47dcaf89034a20a0a0cd42ab20d150 rdf:first Na4b731299f6949208680d63e5a017570
87 rdf:rest N3b6a913e67ab43199e341b16c21b22ea
88 Nf99b30c8826c4d6480b3712a4154cc78 rdf:first N959c589b8e724f779433d97b9b22d59c
89 rdf:rest N11e067ff678c49c19f28b50153dbfe36
90 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
91 schema:familyName Bolotnikov
92 schema:givenName Vladimir
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
94 rdf:type schema:Person
95 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
96 https://doi.org/10.1007/978-3-0348-7709-1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
99 https://doi.org/10.1007/bf01238220
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01456817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005171999
102 https://doi.org/10.1007/bf01456817
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01890578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040283637
105 https://doi.org/10.1007/bf01890578
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf03321625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004426410
108 https://doi.org/10.1007/bf03321625
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf03321626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021013303
111 https://doi.org/10.1007/bf03321626
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00365-006-0646-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004702579
114 https://doi.org/10.1007/s00365-006-0646-3
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10231-010-0165-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049656861
117 https://doi.org/10.1007/s10231-010-0165-y
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s13324-012-0050-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005331607
120 https://doi.org/10.1007/s13324-012-0050-5
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
123 https://doi.org/10.1016/j.cam.2012.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041051533
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0022-247x(02)00249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044241928
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1090/s0002-9939-07-09126-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010915406
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1090/s0002-9939-1965-0176083-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047523478
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1090/s0002-9939-1980-0553394-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014490203
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/imamci/3.2-3.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687057
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/9.751366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245915
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/9.928584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246726
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1112/jlms/s2-26.2.271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026038579
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/0518091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847962
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
144 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...