Detecting Process Concept Drifts from Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-20

AUTHORS

Canbin Zheng , Lijie Wen , Jianmin Wang

ABSTRACT

Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift. More... »

PAGES

524-542

Book

TITLE

On the Move to Meaningful Internet Systems. OTM 2017 Conferences

ISBN

978-3-319-69461-0
978-3-319-69462-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33

DOI

http://dx.doi.org/10.1007/978-3-319-69462-7_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092291581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Canbin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-20", 
    "datePublishedReg": "2017-10-20", 
    "description": "Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift.", 
    "editor": [
      {
        "familyName": "Panetto", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Debruyne", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaaloul", 
        "givenName": "Walid", 
        "type": "Person"
      }, 
      {
        "familyName": "Papazoglou", 
        "givenName": "Mike", 
        "type": "Person"
      }, 
      {
        "familyName": "Paschke", 
        "givenName": "Adrian", 
        "type": "Person"
      }, 
      {
        "familyName": "Ardagna", 
        "givenName": "Claudio Agostino", 
        "type": "Person"
      }, 
      {
        "familyName": "Meersman", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-69462-7_33", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-69461-0", 
        "978-3-319-69462-7"
      ], 
      "name": "On the Move to Meaningful Internet Systems. OTM 2017 Conferences", 
      "type": "Book"
    }, 
    "keywords": [
      "event logs", 
      "traditional process discovery algorithms", 
      "candidate change points", 
      "process discovery algorithms", 
      "concept drift phenomenon", 
      "discovery algorithm", 
      "process discovery", 
      "relation matrix", 
      "concept drift", 
      "change point detection", 
      "point detection", 
      "process model", 
      "synthetic logs", 
      "sudden drift", 
      "change points", 
      "novel approach", 
      "log", 
      "algorithm", 
      "drift phenomenon", 
      "change localization", 
      "accuracy", 
      "challenges", 
      "detection", 
      "technique", 
      "point", 
      "art", 
      "discovery", 
      "different phases", 
      "process", 
      "state", 
      "model", 
      "localization", 
      "matrix", 
      "experiments", 
      "drift", 
      "parameters", 
      "rows", 
      "overall results", 
      "results", 
      "relation", 
      "phase", 
      "steady state", 
      "phenomenon", 
      "relationship", 
      "factors", 
      "activity", 
      "changes", 
      "approach", 
      "paper", 
      "change process discovery", 
      "such concept drift phenomenon", 
      "Process Concept Drifts"
    ], 
    "name": "Detecting Process Concept Drifts from Event Logs", 
    "pagination": "524-542", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092291581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-69462-7_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-69462-7_33", 
      "https://app.dimensions.ai/details/publication/pub.1092291581"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_199.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-69462-7_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      23 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-69462-7_33 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N77bee6f1a0614d459e2e52c8fc7647db
4 schema:datePublished 2017-10-20
5 schema:datePublishedReg 2017-10-20
6 schema:description Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift.
7 schema:editor Nfe609124a2244c9b818aebbf4792749f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc446ed4f79444074bcd8aa2e14893d51
12 schema:keywords Process Concept Drifts
13 accuracy
14 activity
15 algorithm
16 approach
17 art
18 candidate change points
19 challenges
20 change localization
21 change point detection
22 change points
23 change process discovery
24 changes
25 concept drift
26 concept drift phenomenon
27 detection
28 different phases
29 discovery
30 discovery algorithm
31 drift
32 drift phenomenon
33 event logs
34 experiments
35 factors
36 localization
37 log
38 matrix
39 model
40 novel approach
41 overall results
42 paper
43 parameters
44 phase
45 phenomenon
46 point
47 point detection
48 process
49 process discovery
50 process discovery algorithms
51 process model
52 relation
53 relation matrix
54 relationship
55 results
56 rows
57 state
58 steady state
59 such concept drift phenomenon
60 sudden drift
61 synthetic logs
62 technique
63 traditional process discovery algorithms
64 schema:name Detecting Process Concept Drifts from Event Logs
65 schema:pagination 524-542
66 schema:productId N03aa69d5123345c89b9060a65c9d1161
67 Nb90198310dcb436d9d3c727503de697a
68 schema:publisher Na65ea5b06852452f913b4ced72031fde
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092291581
70 https://doi.org/10.1007/978-3-319-69462-7_33
71 schema:sdDatePublished 2022-01-01T19:11
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N804346ba8b6e45958df05b4081d030ef
74 schema:url https://doi.org/10.1007/978-3-319-69462-7_33
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N02869bfcdfd94f7d92a57094734a1db3 rdf:first N17ddc96170584c8a8257af2c75a59135
79 rdf:rest N0facd7c2e0cc4acba302c46b17d1ee62
80 N03aa69d5123345c89b9060a65c9d1161 schema:name doi
81 schema:value 10.1007/978-3-319-69462-7_33
82 rdf:type schema:PropertyValue
83 N0e13cbf39425426f9bfb0e00fc29d941 schema:familyName Ardagna
84 schema:givenName Claudio Agostino
85 rdf:type schema:Person
86 N0facd7c2e0cc4acba302c46b17d1ee62 rdf:first Nf32aec3bc8cd47bfbfbdb2d20d9a8622
87 rdf:rest N9ced4d0fd2b84fdf9b258d18347bb0c1
88 N158bab00c5954d5990c6126e31800b1a rdf:first Nf6890eeedd494968972675ac583b48a5
89 rdf:rest N02869bfcdfd94f7d92a57094734a1db3
90 N17ddc96170584c8a8257af2c75a59135 schema:familyName Papazoglou
91 schema:givenName Mike
92 rdf:type schema:Person
93 N2fb34a4f40734ec095dda80103992494 schema:affiliation grid-institutes:grid.12527.33
94 schema:familyName Zheng
95 schema:givenName Canbin
96 rdf:type schema:Person
97 N3036faeb28ae4c12939326a4e3286df1 rdf:first sg:person.013640554311.55
98 rdf:rest N9641938e76414ea899353f1559aac656
99 N331d682a0d784b20bdaa1e7e39cdd967 schema:familyName Meersman
100 schema:givenName Robert
101 rdf:type schema:Person
102 N77bee6f1a0614d459e2e52c8fc7647db rdf:first N2fb34a4f40734ec095dda80103992494
103 rdf:rest N3036faeb28ae4c12939326a4e3286df1
104 N79ce4ce5a33a4e9cae0618aab4298f75 schema:familyName Panetto
105 schema:givenName Hervé
106 rdf:type schema:Person
107 N804346ba8b6e45958df05b4081d030ef schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N904fc495b5e249028a869a2a3fdbb1e5 schema:familyName Debruyne
110 schema:givenName Christophe
111 rdf:type schema:Person
112 N9641938e76414ea899353f1559aac656 rdf:first sg:person.012303351315.43
113 rdf:rest rdf:nil
114 N9ced4d0fd2b84fdf9b258d18347bb0c1 rdf:first N0e13cbf39425426f9bfb0e00fc29d941
115 rdf:rest Nddbc4be595434dc78578c51ab99da205
116 Na65ea5b06852452f913b4ced72031fde schema:name Springer Nature
117 rdf:type schema:Organisation
118 Nb90198310dcb436d9d3c727503de697a schema:name dimensions_id
119 schema:value pub.1092291581
120 rdf:type schema:PropertyValue
121 Nc446ed4f79444074bcd8aa2e14893d51 schema:isbn 978-3-319-69461-0
122 978-3-319-69462-7
123 schema:name On the Move to Meaningful Internet Systems. OTM 2017 Conferences
124 rdf:type schema:Book
125 Nd8748a8922044a8193f8a1ef6cf5b8e6 rdf:first N904fc495b5e249028a869a2a3fdbb1e5
126 rdf:rest N158bab00c5954d5990c6126e31800b1a
127 Nddbc4be595434dc78578c51ab99da205 rdf:first N331d682a0d784b20bdaa1e7e39cdd967
128 rdf:rest rdf:nil
129 Nf32aec3bc8cd47bfbfbdb2d20d9a8622 schema:familyName Paschke
130 schema:givenName Adrian
131 rdf:type schema:Person
132 Nf6890eeedd494968972675ac583b48a5 schema:familyName Gaaloul
133 schema:givenName Walid
134 rdf:type schema:Person
135 Nfe609124a2244c9b818aebbf4792749f rdf:first N79ce4ce5a33a4e9cae0618aab4298f75
136 rdf:rest Nd8748a8922044a8193f8a1ef6cf5b8e6
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
144 schema:familyName Wang
145 schema:givenName Jianmin
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
147 rdf:type schema:Person
148 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
149 schema:familyName Wen
150 schema:givenName Lijie
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
152 rdf:type schema:Person
153 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
154 schema:name School of Software, Tsinghua University, 100084, Beijing, China
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...