Detecting Process Concept Drifts from Event Logs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-20

AUTHORS

Canbin Zheng , Lijie Wen , Jianmin Wang

ABSTRACT

Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift. More... »

PAGES

524-542

Book

TITLE

On the Move to Meaningful Internet Systems. OTM 2017 Conferences

ISBN

978-3-319-69461-0
978-3-319-69462-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33

DOI

http://dx.doi.org/10.1007/978-3-319-69462-7_33

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092291581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Canbin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-20", 
    "datePublishedReg": "2017-10-20", 
    "description": "Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift.", 
    "editor": [
      {
        "familyName": "Panetto", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Debruyne", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "familyName": "Gaaloul", 
        "givenName": "Walid", 
        "type": "Person"
      }, 
      {
        "familyName": "Papazoglou", 
        "givenName": "Mike", 
        "type": "Person"
      }, 
      {
        "familyName": "Paschke", 
        "givenName": "Adrian", 
        "type": "Person"
      }, 
      {
        "familyName": "Ardagna", 
        "givenName": "Claudio Agostino", 
        "type": "Person"
      }, 
      {
        "familyName": "Meersman", 
        "givenName": "Robert", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-69462-7_33", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-69461-0", 
        "978-3-319-69462-7"
      ], 
      "name": "On the Move to Meaningful Internet Systems. OTM 2017 Conferences", 
      "type": "Book"
    }, 
    "keywords": [
      "event logs", 
      "traditional process discovery algorithms", 
      "process discovery algorithms", 
      "concept drift phenomenon", 
      "discovery algorithm", 
      "process discovery", 
      "relation matrix", 
      "concept drift", 
      "sudden drift", 
      "change-point detection", 
      "point detection", 
      "candidate change points", 
      "process model", 
      "synthetic logs", 
      "novel approach", 
      "change points", 
      "logs", 
      "drift phenomenon", 
      "algorithm", 
      "change localization", 
      "accuracy", 
      "challenges", 
      "detection", 
      "art", 
      "technique", 
      "point", 
      "discovery", 
      "different phases", 
      "state", 
      "model", 
      "experiments", 
      "process", 
      "localization", 
      "matrix", 
      "drift", 
      "rows", 
      "overall results", 
      "parameters", 
      "results", 
      "relationship", 
      "relation", 
      "phase", 
      "phenomenon", 
      "factors", 
      "activity", 
      "changes", 
      "steady state", 
      "approach", 
      "paper"
    ], 
    "name": "Detecting Process Concept Drifts from Event Logs", 
    "pagination": "524-542", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092291581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-69462-7_33"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-69462-7_33", 
      "https://app.dimensions.ai/details/publication/pub.1092291581"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_356.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-69462-7_33"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69462-7_33'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-69462-7_33 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb67ab6d639b4454d9e7d446baf9d1d77
4 schema:datePublished 2017-10-20
5 schema:datePublishedReg 2017-10-20
6 schema:description Traditional process discovery algorithms assume processes to be in a steady state. However, process models tend to be dynamic due to various factors, which has brought challenges such as change point detection, change localization and change process discovery. Existing techniques to identify change points are sensitive to parameters and the accuracy is not satisfactory. This paper proposes a novel approach to deal with such concept drift phenomenon. Event logs can be characterized by the relationships between activities, which motivates us to transform a log into a relation matrix. By detecting the always and never intervals in each row of the relation matrix, we obtain candidate change points for each relation. Finally, all the candidate change points are combined into an overall result. The approach is also able to localize the changes between different phases. Experiments on synthetic logs show that our approach is accurate and performs better than the state of the art in detecting sudden drift.
7 schema:editor N5ec4f1101d1f4447bb8f5698d93d9505
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne08502489c274ef88f958f35ca954cf0
12 schema:keywords accuracy
13 activity
14 algorithm
15 approach
16 art
17 candidate change points
18 challenges
19 change localization
20 change points
21 change-point detection
22 changes
23 concept drift
24 concept drift phenomenon
25 detection
26 different phases
27 discovery
28 discovery algorithm
29 drift
30 drift phenomenon
31 event logs
32 experiments
33 factors
34 localization
35 logs
36 matrix
37 model
38 novel approach
39 overall results
40 paper
41 parameters
42 phase
43 phenomenon
44 point
45 point detection
46 process
47 process discovery
48 process discovery algorithms
49 process model
50 relation
51 relation matrix
52 relationship
53 results
54 rows
55 state
56 steady state
57 sudden drift
58 synthetic logs
59 technique
60 traditional process discovery algorithms
61 schema:name Detecting Process Concept Drifts from Event Logs
62 schema:pagination 524-542
63 schema:productId N53f763bacfba40e4a1285683be0a9a7e
64 N96de429115de43a2a2e774df622c349d
65 schema:publisher Nb86984cc4d2f4c62ac773c456f41bb60
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092291581
67 https://doi.org/10.1007/978-3-319-69462-7_33
68 schema:sdDatePublished 2022-05-20T07:46
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N53855300fd304aa89045cab117793a0e
71 schema:url https://doi.org/10.1007/978-3-319-69462-7_33
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N1a5d2f579981405abbd1e92f88547466 schema:familyName Debruyne
76 schema:givenName Christophe
77 rdf:type schema:Person
78 N1bbbacb852c44b4bae5f3264a5e92e38 rdf:first N80d76b8c61b34b71ad0e212f16fcfd8a
79 rdf:rest N39bdbf3c921c467f8574974319d06b0a
80 N1d95404d66f142d9a25e53d0c9cf264d rdf:first sg:person.013640554311.55
81 rdf:rest N30adde000ad84194a47351d01274462e
82 N30adde000ad84194a47351d01274462e rdf:first sg:person.012303351315.43
83 rdf:rest rdf:nil
84 N33d98e0cf1b443ec9e6babf9e571fde2 rdf:first Nc7c4428f25de4e2da677c2a13f6ec151
85 rdf:rest N86878bb102ba43dbb97d34c3a6e1eb1b
86 N36c714976ce84c8db74045307ca42ae4 schema:affiliation grid-institutes:grid.12527.33
87 schema:familyName Zheng
88 schema:givenName Canbin
89 rdf:type schema:Person
90 N39bdbf3c921c467f8574974319d06b0a rdf:first Ne87fd6c1b4a54bbe9b75575faf4bc1c7
91 rdf:rest N33d98e0cf1b443ec9e6babf9e571fde2
92 N53855300fd304aa89045cab117793a0e schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N53f763bacfba40e4a1285683be0a9a7e schema:name dimensions_id
95 schema:value pub.1092291581
96 rdf:type schema:PropertyValue
97 N5ec4f1101d1f4447bb8f5698d93d9505 rdf:first Nd188ba71e00040eabb9ce105b40e3ba8
98 rdf:rest Ncb0043e76ab444ea980263bf66d87b9a
99 N80d76b8c61b34b71ad0e212f16fcfd8a schema:familyName Papazoglou
100 schema:givenName Mike
101 rdf:type schema:Person
102 N86878bb102ba43dbb97d34c3a6e1eb1b rdf:first N95a9293ade8f4cb3bacb92902721c515
103 rdf:rest rdf:nil
104 N95a9293ade8f4cb3bacb92902721c515 schema:familyName Meersman
105 schema:givenName Robert
106 rdf:type schema:Person
107 N96de429115de43a2a2e774df622c349d schema:name doi
108 schema:value 10.1007/978-3-319-69462-7_33
109 rdf:type schema:PropertyValue
110 Na920e21d53e4463793627b3289d38f5d schema:familyName Gaaloul
111 schema:givenName Walid
112 rdf:type schema:Person
113 Nb67ab6d639b4454d9e7d446baf9d1d77 rdf:first N36c714976ce84c8db74045307ca42ae4
114 rdf:rest N1d95404d66f142d9a25e53d0c9cf264d
115 Nb86984cc4d2f4c62ac773c456f41bb60 schema:name Springer Nature
116 rdf:type schema:Organisation
117 Nc7c4428f25de4e2da677c2a13f6ec151 schema:familyName Ardagna
118 schema:givenName Claudio Agostino
119 rdf:type schema:Person
120 Ncb0043e76ab444ea980263bf66d87b9a rdf:first N1a5d2f579981405abbd1e92f88547466
121 rdf:rest Nde3d2198c4e248c29da41aed97006ec0
122 Nd188ba71e00040eabb9ce105b40e3ba8 schema:familyName Panetto
123 schema:givenName Hervé
124 rdf:type schema:Person
125 Nde3d2198c4e248c29da41aed97006ec0 rdf:first Na920e21d53e4463793627b3289d38f5d
126 rdf:rest N1bbbacb852c44b4bae5f3264a5e92e38
127 Ne08502489c274ef88f958f35ca954cf0 schema:isbn 978-3-319-69461-0
128 978-3-319-69462-7
129 schema:name On the Move to Meaningful Internet Systems. OTM 2017 Conferences
130 rdf:type schema:Book
131 Ne87fd6c1b4a54bbe9b75575faf4bc1c7 schema:familyName Paschke
132 schema:givenName Adrian
133 rdf:type schema:Person
134 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information and Computing Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
138 schema:name Artificial Intelligence and Image Processing
139 rdf:type schema:DefinedTerm
140 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
141 schema:familyName Wang
142 schema:givenName Jianmin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
144 rdf:type schema:Person
145 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
146 schema:familyName Wen
147 schema:givenName Lijie
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
149 rdf:type schema:Person
150 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, 100084, Beijing, China
151 schema:name School of Software, Tsinghua University, 100084, Beijing, China
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...