Fair Recommendations Through Diversity Promotion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-10-14

AUTHORS

Pierre-René Lhérisson , Fabrice Muhlenbach , Pierre Maret

ABSTRACT

We address the problem of overspecialization in streaming platform recommender systems. The personalization of web pages by delivering content to users is a challenging task in data mining. But it has been proved that beside optimizing the relevance accuracy such systems should also rely on other factors like diversity or novelty. In this paper we focus on modeling users’ boundary area of interest by selecting the most diverse items they liked in the past. We apply diversification while building the top-N list of recommendations. We select the items we want to recommend from an area where we consider a user will find item different from what she or he likes in the past. We evaluate our approach in offline analysis on two datasets, showing that our approach brings diversity and is competitive against implicit state-of-the-art method. More... »

PAGES

89-103

References to SciGraph publications

  • 2006. Personalized Recommendation Based on Partial Similarity of Interests in ADVANCED DATA MINING AND APPLICATIONS
  • 2013. Mining Item Popularity for Recommender Systems in ADVANCED DATA MINING AND APPLICATIONS
  • 2001-07-12. Similarity vs. Diversity in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2001. Self-Organizing Maps in NONE
  • 2015. Novelty and Diversity in Recommender Systems in RECOMMENDER SYSTEMS HANDBOOK
  • Book

    TITLE

    Advanced Data Mining and Applications

    ISBN

    978-3-319-69178-7
    978-3-319-69179-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-69179-4_7

    DOI

    http://dx.doi.org/10.1007/978-3-319-69179-4_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092199595


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Universit\u00e9 de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France", 
                "D Lab, 5 rue Javelin Pagnon, 42000, Saint Etienne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lh\u00e9risson", 
            "givenName": "Pierre-Ren\u00e9", 
            "id": "sg:person.012645041335.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645041335.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Universit\u00e9 de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muhlenbach", 
            "givenName": "Fabrice", 
            "id": "sg:person.011304233663.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304233663.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Universit\u00e9 de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maret", 
            "givenName": "Pierre", 
            "id": "sg:person.010534126744.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010534126744.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1639714.1639769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000862013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1125451.1125659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001614354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2959100.2959149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002108729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2959100.2959177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002376798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2365952.2365962", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009637152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11811305_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009841472", 
              "https://doi.org/10.1007/11811305_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11811305_56", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009841472", 
              "https://doi.org/10.1007/11811305_56"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44593-5_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018631941", 
              "https://doi.org/10.1007/3-540-44593-5_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44593-5_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018631941", 
              "https://doi.org/10.1007/3-540-44593-5_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2487575.2487656", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018701333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2645710.2645737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019515182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2043932.2043957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020497899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1190/1.1445082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020947420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330191", 
              "https://doi.org/10.1007/978-3-642-56927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330191", 
              "https://doi.org/10.1007/978-3-642-56927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1454008.1454030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031961905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2043932.2044016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033450883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2827872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035328812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2043932.2043955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036988388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.1980.0020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038702537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1864708.1864761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039313317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2959100.2959186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039888994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/290941.291025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040730716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-7637-6_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042931153", 
              "https://doi.org/10.1007/978-1-4899-7637-6_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ins.2016.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042989318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1639714.1639778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043650731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2559952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047059808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-53917-6_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053187467", 
              "https://doi.org/10.1007/978-3-642-53917-6_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wi-iat.2009.85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094135474"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-10-14", 
        "datePublishedReg": "2017-10-14", 
        "description": "We address the problem of overspecialization in streaming platform recommender systems. The personalization of web pages by delivering content to users is a challenging task in data mining. But it has been proved that beside optimizing the relevance accuracy such systems should also rely on other factors like diversity or novelty. In this paper we focus on modeling users\u2019 boundary area of interest by selecting the most diverse items they liked in the past. We apply diversification while building the top-N list of recommendations. We select the items we want to recommend from an area where we consider a user will find item different from what she or he likes in the past. We evaluate our approach in offline analysis on two datasets, showing that our approach brings diversity and is competitive against implicit state-of-the-art method.", 
        "editor": [
          {
            "familyName": "Cong", 
            "givenName": "Gao", 
            "type": "Person"
          }, 
          {
            "familyName": "Peng", 
            "givenName": "Wen-Chih", 
            "type": "Person"
          }, 
          {
            "familyName": "Zhang", 
            "givenName": "Wei Emma", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Chengliang", 
            "type": "Person"
          }, 
          {
            "familyName": "Sun", 
            "givenName": "Aixin", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-69179-4_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-69178-7", 
            "978-3-319-69179-4"
          ], 
          "name": "Advanced Data Mining and Applications", 
          "type": "Book"
        }, 
        "name": "Fair Recommendations Through Diversity Promotion", 
        "pagination": "89-103", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-69179-4_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bf3b916e5ba4253641dc8d6bec173bd8a1be3f3188af60e9473cbbcf11a48356"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092199595"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-69179-4_7", 
          "https://app.dimensions.ai/details/publication/pub.1092199595"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T04:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100779_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-69179-4_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69179-4_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69179-4_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69179-4_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-69179-4_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      23 PREDICATES      52 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-69179-4_7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2c2ce802990b4744844ca8c658b19ffa
    4 schema:citation sg:pub.10.1007/11811305_56
    5 sg:pub.10.1007/3-540-44593-5_25
    6 sg:pub.10.1007/978-1-4899-7637-6_26
    7 sg:pub.10.1007/978-3-642-53917-6_33
    8 sg:pub.10.1007/978-3-642-56927-2
    9 https://doi.org/10.1016/j.ins.2016.11.015
    10 https://doi.org/10.1098/rspb.1980.0020
    11 https://doi.org/10.1109/wi-iat.2009.85
    12 https://doi.org/10.1145/1125451.1125659
    13 https://doi.org/10.1145/1454008.1454030
    14 https://doi.org/10.1145/1639714.1639769
    15 https://doi.org/10.1145/1639714.1639778
    16 https://doi.org/10.1145/1864708.1864761
    17 https://doi.org/10.1145/2043932.2043955
    18 https://doi.org/10.1145/2043932.2043957
    19 https://doi.org/10.1145/2043932.2044016
    20 https://doi.org/10.1145/2365952.2365962
    21 https://doi.org/10.1145/2487575.2487656
    22 https://doi.org/10.1145/2559952
    23 https://doi.org/10.1145/2645710.2645737
    24 https://doi.org/10.1145/2827872
    25 https://doi.org/10.1145/290941.291025
    26 https://doi.org/10.1145/2959100.2959149
    27 https://doi.org/10.1145/2959100.2959177
    28 https://doi.org/10.1145/2959100.2959186
    29 https://doi.org/10.1190/1.1445082
    30 schema:datePublished 2017-10-14
    31 schema:datePublishedReg 2017-10-14
    32 schema:description We address the problem of overspecialization in streaming platform recommender systems. The personalization of web pages by delivering content to users is a challenging task in data mining. But it has been proved that beside optimizing the relevance accuracy such systems should also rely on other factors like diversity or novelty. In this paper we focus on modeling users’ boundary area of interest by selecting the most diverse items they liked in the past. We apply diversification while building the top-N list of recommendations. We select the items we want to recommend from an area where we consider a user will find item different from what she or he likes in the past. We evaluate our approach in offline analysis on two datasets, showing that our approach brings diversity and is competitive against implicit state-of-the-art method.
    33 schema:editor N5f0be6b637f04ea89ccc5f9169d7de4c
    34 schema:genre chapter
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N814fb6f41be246aeb372fc4a2dd50f0c
    38 schema:name Fair Recommendations Through Diversity Promotion
    39 schema:pagination 89-103
    40 schema:productId N2caad527b8e14301af015728a6e82aba
    41 Ndd778a5604b849f88c647be1585ee240
    42 Nfe8e99cf92934b80899284ad8b03777a
    43 schema:publisher N4546117d649a48a58e286447d32624f5
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092199595
    45 https://doi.org/10.1007/978-3-319-69179-4_7
    46 schema:sdDatePublished 2019-04-16T04:59
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N488cfa6c171e422cb22630c8ddb9fce2
    49 schema:url https://link.springer.com/10.1007%2F978-3-319-69179-4_7
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset chapters
    52 rdf:type schema:Chapter
    53 N1b6035dcf3b8495a95abb4dcfb639319 schema:familyName Li
    54 schema:givenName Chengliang
    55 rdf:type schema:Person
    56 N2c2ce802990b4744844ca8c658b19ffa rdf:first sg:person.012645041335.89
    57 rdf:rest Ne737436c12ba4628a906a789bbe14cee
    58 N2caad527b8e14301af015728a6e82aba schema:name doi
    59 schema:value 10.1007/978-3-319-69179-4_7
    60 rdf:type schema:PropertyValue
    61 N4546117d649a48a58e286447d32624f5 schema:location Cham
    62 schema:name Springer International Publishing
    63 rdf:type schema:Organisation
    64 N488cfa6c171e422cb22630c8ddb9fce2 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N59335b164158452c86b68758ec23c9d9 schema:familyName Cong
    67 schema:givenName Gao
    68 rdf:type schema:Person
    69 N5f0be6b637f04ea89ccc5f9169d7de4c rdf:first N59335b164158452c86b68758ec23c9d9
    70 rdf:rest N9d4cb5f39c2e46b3b8563387aec45980
    71 N6898aed0723b41ca980ea18443129d13 schema:familyName Peng
    72 schema:givenName Wen-Chih
    73 rdf:type schema:Person
    74 N7a93425c89754b27870d7cc30d0ce539 schema:name Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France
    75 rdf:type schema:Organization
    76 N7af29df1e81544d3af0fd596e9beed32 schema:name Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France
    77 rdf:type schema:Organization
    78 N7c8b9bdd3ad44409848710889265d773 rdf:first N1b6035dcf3b8495a95abb4dcfb639319
    79 rdf:rest N9db18a7576984c0badde5bdd72c0ac91
    80 N814fb6f41be246aeb372fc4a2dd50f0c schema:isbn 978-3-319-69178-7
    81 978-3-319-69179-4
    82 schema:name Advanced Data Mining and Applications
    83 rdf:type schema:Book
    84 N83fe688132764726895993dd915580e2 schema:name D Lab, 5 rue Javelin Pagnon, 42000, Saint Etienne, France
    85 Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023, Saint Etienne, France
    86 rdf:type schema:Organization
    87 N9d4cb5f39c2e46b3b8563387aec45980 rdf:first N6898aed0723b41ca980ea18443129d13
    88 rdf:rest Ne7f8c28c16bb4ecbb1a51db5baad7eb6
    89 N9db18a7576984c0badde5bdd72c0ac91 rdf:first Nd2b2dfb0139546a2a5e20cc1c8ae5aba
    90 rdf:rest rdf:nil
    91 N9e163b497a49462188755102e3f759bd schema:familyName Zhang
    92 schema:givenName Wei Emma
    93 rdf:type schema:Person
    94 Nd2b2dfb0139546a2a5e20cc1c8ae5aba schema:familyName Sun
    95 schema:givenName Aixin
    96 rdf:type schema:Person
    97 Ndd778a5604b849f88c647be1585ee240 schema:name dimensions_id
    98 schema:value pub.1092199595
    99 rdf:type schema:PropertyValue
    100 Ne737436c12ba4628a906a789bbe14cee rdf:first sg:person.011304233663.50
    101 rdf:rest Ne9caf8e2684e47c1963243c8eb9f0666
    102 Ne7f8c28c16bb4ecbb1a51db5baad7eb6 rdf:first N9e163b497a49462188755102e3f759bd
    103 rdf:rest N7c8b9bdd3ad44409848710889265d773
    104 Ne9caf8e2684e47c1963243c8eb9f0666 rdf:first sg:person.010534126744.21
    105 rdf:rest rdf:nil
    106 Nfe8e99cf92934b80899284ad8b03777a schema:name readcube_id
    107 schema:value bf3b916e5ba4253641dc8d6bec173bd8a1be3f3188af60e9473cbbcf11a48356
    108 rdf:type schema:PropertyValue
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:person.010534126744.21 schema:affiliation N7af29df1e81544d3af0fd596e9beed32
    116 schema:familyName Maret
    117 schema:givenName Pierre
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010534126744.21
    119 rdf:type schema:Person
    120 sg:person.011304233663.50 schema:affiliation N7a93425c89754b27870d7cc30d0ce539
    121 schema:familyName Muhlenbach
    122 schema:givenName Fabrice
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011304233663.50
    124 rdf:type schema:Person
    125 sg:person.012645041335.89 schema:affiliation N83fe688132764726895993dd915580e2
    126 schema:familyName Lhérisson
    127 schema:givenName Pierre-René
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012645041335.89
    129 rdf:type schema:Person
    130 sg:pub.10.1007/11811305_56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009841472
    131 https://doi.org/10.1007/11811305_56
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/3-540-44593-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018631941
    134 https://doi.org/10.1007/3-540-44593-5_25
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/978-1-4899-7637-6_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042931153
    137 https://doi.org/10.1007/978-1-4899-7637-6_26
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-3-642-53917-6_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053187467
    140 https://doi.org/10.1007/978-3-642-53917-6_33
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
    143 https://doi.org/10.1007/978-3-642-56927-2
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.ins.2016.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042989318
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1098/rspb.1980.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038702537
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/wi-iat.2009.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094135474
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/1125451.1125659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001614354
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1145/1454008.1454030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031961905
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1145/1639714.1639769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000862013
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1145/1639714.1639778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043650731
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1145/1864708.1864761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313317
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1145/2043932.2043955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036988388
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1145/2043932.2043957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020497899
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1145/2043932.2044016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033450883
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1145/2365952.2365962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009637152
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1145/2487575.2487656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018701333
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1145/2559952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047059808
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1145/2645710.2645737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019515182
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1145/2827872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035328812
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1145/290941.291025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040730716
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1145/2959100.2959149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002108729
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1145/2959100.2959177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002376798
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1145/2959100.2959186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039888994
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1190/1.1445082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020947420
    186 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...