2017-10-04
AUTHORSRiyadh Benammar , Christine Largeron , Véronique Eglin , Myléne Pardoen
ABSTRACTMusic score analysis is an ongoing issue for musicologists. Discovering frequent musical motifs with variants is needed in order to make critical study of music scores and investigate compositions styles. We introduce a mining algorithm, called CSMA for Constrained String Mining Algorithm, to meet this need considering symbol-based representation of music scores. This algorithm, through motif length and maximal gap constraints, is able to find identical motifs present in a single string or a set of strings. It is embedded into a complete data mining process aiming at finding variants of musical motif. Experiments, carried out on several datasets, showed that CSMA is efficient as string mining algorithm applied on one string or a set of strings. More... »
PAGES14-26
Advances in Intelligent Data Analysis XVI
ISBN
978-3-319-68764-3
978-3-319-68765-0
http://scigraph.springernature.com/pub.10.1007/978-3-319-68765-0_2
DOIhttp://dx.doi.org/10.1007/978-3-319-68765-0_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1092071969
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1904",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Performing Arts and Creative Writing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/19",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Studies in Creative Arts and Writing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire d'Informatique en Images et Syst\u00e8mes d'Information",
"id": "https://www.grid.ac/institutes/grid.482747.a",
"name": [
"Universit\u00e9 De Lyon, Lyon, France",
"CNRS INSA-Lyon, LIRIS, UMR5205, 69621, Lyon, France"
],
"type": "Organization"
},
"familyName": "Benammar",
"givenName": "Riyadh",
"id": "sg:person.07671741403.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671741403.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "French National Centre for Scientific Research",
"id": "https://www.grid.ac/institutes/grid.4444.0",
"name": [
"Universit\u00e9 De Lyon, Lyon, France",
"UJM-Saint-Etienne, CNRS, Institut d\u2019Optique Graduate School, Laboratoire Hubert Curien UMR 5516, 42023, Saint-Etienne, France"
],
"type": "Organization"
},
"familyName": "Largeron",
"givenName": "Christine",
"id": "sg:person.012240633251.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240633251.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire d'Informatique en Images et Syst\u00e8mes d'Information",
"id": "https://www.grid.ac/institutes/grid.482747.a",
"name": [
"Universit\u00e9 De Lyon, Lyon, France",
"CNRS INSA-Lyon, LIRIS, UMR5205, 69621, Lyon, France"
],
"type": "Organization"
},
"familyName": "Eglin",
"givenName": "V\u00e9ronique",
"id": "sg:person.016124661615.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016124661615.84"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute Of Science De L'homme",
"id": "https://www.grid.ac/institutes/grid.482739.3",
"name": [
"Institut des Sciences de l\u2019Homme (FRE 3768), 14 Avenue Berthelot, 69363, Lyon cedex 07, France"
],
"type": "Organization"
},
"familyName": "Pardoen",
"givenName": "Myl\u00e9ne",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/288627.288668",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004463814"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1009748302351",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005237640",
"https://doi.org/10.1023/a:1009748302351"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2431211.2431218",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014802130"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/354756.354849",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016486740"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-46131-1_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022850467",
"https://doi.org/10.1007/978-3-319-46131-1_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-06608-0_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030108894",
"https://doi.org/10.1007/978-3-319-06608-0_4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/347090.347167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035246359"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1007652502315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035368646",
"https://doi.org/10.1023/a:1007652502315"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-006-0006-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048744303",
"https://doi.org/10.1007/s10844-006-0006-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-006-0006-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048744303",
"https://doi.org/10.1007/s10844-006-0006-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-010-0122-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051719316",
"https://doi.org/10.1007/s10844-010-0122-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10844-010-0122-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051719316",
"https://doi.org/10.1007/s10844-010-0122-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tkde.2011.69",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061662483"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icde.1995.380415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094007712"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icde.2001.914830",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095566607"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-10-04",
"datePublishedReg": "2017-10-04",
"description": "Music score analysis is an ongoing issue for musicologists. Discovering frequent musical motifs with variants is needed in order to make critical study of music scores and investigate compositions styles. We introduce a mining algorithm, called CSMA for Constrained String Mining Algorithm, to meet this need considering symbol-based representation of music scores. This algorithm, through motif length and maximal gap constraints, is able to find identical motifs present in a single string or a set of strings. It is embedded into a complete data mining process aiming at finding variants of musical motif. Experiments, carried out on several datasets, showed that CSMA is efficient as string mining algorithm applied on one string or a set of strings.",
"editor": [
{
"familyName": "Adams",
"givenName": "Niall",
"type": "Person"
},
{
"familyName": "Tucker",
"givenName": "Allan",
"type": "Person"
},
{
"familyName": "Weston",
"givenName": "David",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-68765-0_2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-68764-3",
"978-3-319-68765-0"
],
"name": "Advances in Intelligent Data Analysis XVI",
"type": "Book"
},
"name": "Discovering Motifs with Variants in Music Databases",
"pagination": "14-26",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-68765-0_2"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"0cb0d66c262a2ed368ae4c3acbdf1fe21d9afba21a2f1e7c781e6e16cdd0966c"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1092071969"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-68765-0_2",
"https://app.dimensions.ai/details/publication/pub.1092071969"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T05:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100791_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-319-68765-0_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68765-0_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68765-0_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68765-0_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68765-0_2'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
23 PREDICATES
39 URIs
19 LITERALS
8 BLANK NODES