Joint Orientations from Skeleton Data for Human Activity Recognition View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017-10-13

AUTHORS

Annalisa Franco , Antonio Magnani , Dario Maio

ABSTRACT

The recognition of activities performed by humans, in a non-intrusive and non-cooperative way, is a very relevant task in the development of Ambient Intelligence applications aimed at improving the quality of life by realizing digital environments that are adaptive, sensitive and reactive to the presence (or absence) of the users and to their behavior. In this paper, we present an activity recognition approach where angle information is used to encode the human body posture, i.e. the relative position of its different parts; such information is extracted from skeleton data (joint orientations), acquired by a well known cost-effective depth sensor (Kinect). The system is evaluated on a well-known dataset (CAD-60 (Cornell Activity Dataset) for comparison with the state of the art; moreover, due to the lack of datasets including skeleton orientations, a new benchmark named OAD (Office Activity Dataset) has been internally acquired and will be released to the scientific community. The tests confirm the efficacy of the proposed model and its feasibility for scenarios of varying complexity. More... »

PAGES

152-162

Book

TITLE

Image Analysis and Processing - ICIAP 2017

ISBN

978-3-319-68559-5
978-3-319-68560-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68560-1_14

DOI

http://dx.doi.org/10.1007/978-3-319-68560-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092197205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franco", 
        "givenName": "Annalisa", 
        "id": "sg:person.011002501427.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002501427.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnani", 
        "givenName": "Antonio", 
        "id": "sg:person.010677226334.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010677226334.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy", 
          "id": "http://www.grid.ac/institutes/grid.6292.f", 
          "name": [
            "C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maio", 
        "givenName": "Dario", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-10-13", 
    "datePublishedReg": "2017-10-13", 
    "description": "The recognition of activities performed by humans, in a non-intrusive and non-cooperative way, is a very relevant task in the development of Ambient Intelligence applications aimed at improving the quality of life by realizing digital environments that are adaptive, sensitive and reactive to the presence (or absence) of the users and to their behavior. In this paper, we present an activity recognition approach where angle information is used to encode the human body posture, i.e. the relative position of its different parts; such information is extracted from skeleton data (joint orientations), acquired by a well known cost-effective depth sensor (Kinect). The system is evaluated on a well-known dataset (CAD-60 (Cornell Activity Dataset) for comparison with the state of the art; moreover, due to the lack of datasets including skeleton orientations, a new benchmark named OAD (Office Activity Dataset) has been internally acquired and will be released to the scientific community. The tests confirm the efficacy of the proposed model and its feasibility for scenarios of varying complexity.", 
    "editor": [
      {
        "familyName": "Battiato", 
        "givenName": "Sebastiano", 
        "type": "Person"
      }, 
      {
        "familyName": "Gallo", 
        "givenName": "Giovanni", 
        "type": "Person"
      }, 
      {
        "familyName": "Schettini", 
        "givenName": "Raimondo", 
        "type": "Person"
      }, 
      {
        "familyName": "Stanco", 
        "givenName": "Filippo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68560-1_14", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68559-5", 
        "978-3-319-68560-1"
      ], 
      "name": "Image Analysis and Processing - ICIAP 2017", 
      "type": "Book"
    }, 
    "keywords": [
      "cost-effective depth sensors", 
      "ambient intelligence applications", 
      "activity recognition approach", 
      "recognition of activities", 
      "human body posture", 
      "intelligence applications", 
      "skeleton data", 
      "depth sensor", 
      "recognition approach", 
      "digital environment", 
      "non-cooperative way", 
      "angle information", 
      "relevant tasks", 
      "such information", 
      "users", 
      "information", 
      "dataset", 
      "body posture", 
      "task", 
      "relative position", 
      "recognition", 
      "sensors", 
      "environment", 
      "applications", 
      "system", 
      "different parts", 
      "way", 
      "quality", 
      "data", 
      "posture", 
      "development", 
      "part", 
      "humans", 
      "position", 
      "behavior", 
      "life", 
      "activity", 
      "quality of life", 
      "presence", 
      "paper", 
      "approach"
    ], 
    "name": "Joint Orientations from Skeleton Data for Human Activity Recognition", 
    "pagination": "152-162", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092197205"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68560-1_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68560-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1092197205"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_272.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-68560-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68560-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68560-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68560-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68560-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68560-1_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N33db73cd34be4a8ea58d631ea3953a71
4 schema:datePublished 2017-10-13
5 schema:datePublishedReg 2017-10-13
6 schema:description The recognition of activities performed by humans, in a non-intrusive and non-cooperative way, is a very relevant task in the development of Ambient Intelligence applications aimed at improving the quality of life by realizing digital environments that are adaptive, sensitive and reactive to the presence (or absence) of the users and to their behavior. In this paper, we present an activity recognition approach where angle information is used to encode the human body posture, i.e. the relative position of its different parts; such information is extracted from skeleton data (joint orientations), acquired by a well known cost-effective depth sensor (Kinect). The system is evaluated on a well-known dataset (CAD-60 (Cornell Activity Dataset) for comparison with the state of the art; moreover, due to the lack of datasets including skeleton orientations, a new benchmark named OAD (Office Activity Dataset) has been internally acquired and will be released to the scientific community. The tests confirm the efficacy of the proposed model and its feasibility for scenarios of varying complexity.
7 schema:editor N583087d4b21e46a7b746279f9e3ea086
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf Na73f9e54235f499888dfd229507fcc24
11 schema:keywords activity
12 activity recognition approach
13 ambient intelligence applications
14 angle information
15 applications
16 approach
17 behavior
18 body posture
19 cost-effective depth sensors
20 data
21 dataset
22 depth sensor
23 development
24 different parts
25 digital environment
26 environment
27 human body posture
28 humans
29 information
30 intelligence applications
31 life
32 non-cooperative way
33 paper
34 part
35 position
36 posture
37 presence
38 quality
39 quality of life
40 recognition
41 recognition approach
42 recognition of activities
43 relative position
44 relevant tasks
45 sensors
46 skeleton data
47 such information
48 system
49 task
50 users
51 way
52 schema:name Joint Orientations from Skeleton Data for Human Activity Recognition
53 schema:pagination 152-162
54 schema:productId N634b4b3dd6bc4e0ba182efe4e9d00dd2
55 Nab341ee3054b4dd6967c20017995edd7
56 schema:publisher N9f6dfdc3c9904949b37531426ed0bd60
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092197205
58 https://doi.org/10.1007/978-3-319-68560-1_14
59 schema:sdDatePublished 2022-11-24T21:15
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N48f0b79f79b14b7d8f1bc514599c3d81
62 schema:url https://doi.org/10.1007/978-3-319-68560-1_14
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N27d96f1e240045f982ed5ffc4f638e8d rdf:first N2f6c774e12964a37a5302d15bc499e16
67 rdf:rest Nd0977ac0ae194437b6ba6ee2e3010460
68 N2f6c774e12964a37a5302d15bc499e16 schema:familyName Schettini
69 schema:givenName Raimondo
70 rdf:type schema:Person
71 N33db73cd34be4a8ea58d631ea3953a71 rdf:first sg:person.011002501427.92
72 rdf:rest N5449cb74abe440628384c28548508b67
73 N3de29a27221c4b8492134d488ba925ad schema:familyName Battiato
74 schema:givenName Sebastiano
75 rdf:type schema:Person
76 N48f0b79f79b14b7d8f1bc514599c3d81 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N542120d6002c4fe5a9720dfcacb41d74 schema:familyName Gallo
79 schema:givenName Giovanni
80 rdf:type schema:Person
81 N5449cb74abe440628384c28548508b67 rdf:first sg:person.010677226334.23
82 rdf:rest Neaecb774ed354206a83c9843f828359a
83 N583087d4b21e46a7b746279f9e3ea086 rdf:first N3de29a27221c4b8492134d488ba925ad
84 rdf:rest Nead9d40b41f54cb0a8fc049f54c775b8
85 N634b4b3dd6bc4e0ba182efe4e9d00dd2 schema:name doi
86 schema:value 10.1007/978-3-319-68560-1_14
87 rdf:type schema:PropertyValue
88 N9f6dfdc3c9904949b37531426ed0bd60 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Na73f9e54235f499888dfd229507fcc24 schema:isbn 978-3-319-68559-5
91 978-3-319-68560-1
92 schema:name Image Analysis and Processing - ICIAP 2017
93 rdf:type schema:Book
94 Nab341ee3054b4dd6967c20017995edd7 schema:name dimensions_id
95 schema:value pub.1092197205
96 rdf:type schema:PropertyValue
97 Nd0977ac0ae194437b6ba6ee2e3010460 rdf:first Ndf18eefc68ac426699e5422fd612686e
98 rdf:rest rdf:nil
99 Ndf18eefc68ac426699e5422fd612686e schema:familyName Stanco
100 schema:givenName Filippo
101 rdf:type schema:Person
102 Nead9d40b41f54cb0a8fc049f54c775b8 rdf:first N542120d6002c4fe5a9720dfcacb41d74
103 rdf:rest N27d96f1e240045f982ed5ffc4f638e8d
104 Neaecb774ed354206a83c9843f828359a rdf:first sg:person.013075040365.65
105 rdf:rest rdf:nil
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.010677226334.23 schema:affiliation grid-institutes:grid.6292.f
113 schema:familyName Magnani
114 schema:givenName Antonio
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010677226334.23
116 rdf:type schema:Person
117 sg:person.011002501427.92 schema:affiliation grid-institutes:grid.6292.f
118 schema:familyName Franco
119 schema:givenName Annalisa
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002501427.92
121 rdf:type schema:Person
122 sg:person.013075040365.65 schema:affiliation grid-institutes:grid.6292.f
123 schema:familyName Maio
124 schema:givenName Dario
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
126 rdf:type schema:Person
127 grid-institutes:grid.6292.f schema:alternateName C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy
128 schema:name C.d.L. Ingegneria e Scienze Informatiche, University of Bologna, Via Sacchi, 3, Cesena, FC, Italy
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...