Chinese Remainder Theorem-Based Secret Image Sharing for (k, n) Threshold View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-11-02

AUTHORS

Xuehu Yan , Yuliang Lu , Lintao Liu , Song Wan , Wanmeng Ding , Hanlin Liu

ABSTRACT

In comparison with Shamir’s original polynomial-based secret image sharing (SIS), Chinese remainder theorem-based SIS (CRTSIS) overall has the advantages of lossless recovery, low recovery computation complexity and no auxiliary encryption. Traditional CRTSIS methods generally suffer from no (k, n) threshold, lossy recovery, ignoring the image characteristics and auxiliary encryption. Based on the analysis of image characteristics and SIS, in this paper we propose a CRTSIS method for (k, n) threshold, through dividing the gray image pixel values into two intervals corresponding to two available mapping intervals. Our method realizes (k, n) threshold and lossless recovery for gray image without auxiliary encryption. Analysis and experiments are provided to indicate the effectiveness of the proposed method. More... »

PAGES

433-440

Book

TITLE

Cloud Computing and Security

ISBN

978-3-319-68541-0
978-3-319-68542-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-68542-7_36

DOI

http://dx.doi.org/10.1007/978-3-319-68542-7_36

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092481939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yuliang", 
        "id": "sg:person.015112370271.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Lintao", 
        "id": "sg:person.013517427271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wan", 
        "givenName": "Song", 
        "id": "sg:person.012077574322.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Wanmeng", 
        "id": "sg:person.010577640471.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hefei Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Hanlin", 
        "id": "sg:person.011535473267.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-11-02", 
    "datePublishedReg": "2017-11-02", 
    "description": "In comparison with Shamir\u2019s original polynomial-based secret image sharing (SIS), Chinese remainder theorem-based SIS (CRTSIS) overall has the advantages of lossless recovery, low recovery computation complexity and no auxiliary encryption. Traditional CRTSIS methods generally suffer from no\u00a0(k,\u00a0n)\u00a0threshold, lossy recovery, ignoring the image characteristics and auxiliary encryption. Based on the analysis of image characteristics and SIS, in this paper we propose a CRTSIS method for\u00a0(k,\u00a0n)\u00a0threshold, through dividing the gray image pixel values into two intervals corresponding to two available mapping intervals. Our method realizes\u00a0(k,\u00a0n)\u00a0threshold and lossless recovery for gray image without auxiliary encryption. Analysis and experiments are provided to indicate the effectiveness of the proposed method.", 
    "editor": [
      {
        "familyName": "Sun", 
        "givenName": "Xingming", 
        "type": "Person"
      }, 
      {
        "familyName": "Chao", 
        "givenName": "Han-Chieh", 
        "type": "Person"
      }, 
      {
        "familyName": "You", 
        "givenName": "Xingang", 
        "type": "Person"
      }, 
      {
        "familyName": "Bertino", 
        "givenName": "Elisa", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-68542-7_36", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-68541-0", 
        "978-3-319-68542-7"
      ], 
      "name": "Cloud Computing and Security", 
      "type": "Book"
    }, 
    "keywords": [
      "secret image sharing", 
      "auxiliary encryption", 
      "image sharing", 
      "lossless recovery", 
      "polynomial-based secret image sharing", 
      "low recovery computation complexity", 
      "image characteristics", 
      "image pixel values", 
      "lossy recovery", 
      "Chinese Remainder Theorem", 
      "computation complexity", 
      "gray image", 
      "encryption", 
      "pixel values", 
      "Remainder Theorem", 
      "sharing", 
      "complexity", 
      "images", 
      "method", 
      "effectiveness", 
      "advantages", 
      "threshold", 
      "experiments", 
      "mapping interval", 
      "characteristics", 
      "analysis", 
      "comparison", 
      "theorem", 
      "interval", 
      "values", 
      "recovery", 
      "paper"
    ], 
    "name": "Chinese Remainder Theorem-Based Secret Image Sharing for (k, n) Threshold", 
    "pagination": "433-440", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092481939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-68542-7_36"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-68542-7_36", 
      "https://app.dimensions.ai/details/publication/pub.1092481939"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_228.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-68542-7_36"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68542-7_36'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68542-7_36'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68542-7_36'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-68542-7_36'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      56 URIs      49 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-68542-7_36 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd5bdaf6ad38145c0803e4a125376db67
4 schema:datePublished 2017-11-02
5 schema:datePublishedReg 2017-11-02
6 schema:description In comparison with Shamir’s original polynomial-based secret image sharing (SIS), Chinese remainder theorem-based SIS (CRTSIS) overall has the advantages of lossless recovery, low recovery computation complexity and no auxiliary encryption. Traditional CRTSIS methods generally suffer from no (k, n) threshold, lossy recovery, ignoring the image characteristics and auxiliary encryption. Based on the analysis of image characteristics and SIS, in this paper we propose a CRTSIS method for (k, n) threshold, through dividing the gray image pixel values into two intervals corresponding to two available mapping intervals. Our method realizes (k, n) threshold and lossless recovery for gray image without auxiliary encryption. Analysis and experiments are provided to indicate the effectiveness of the proposed method.
7 schema:editor N40faedf6499f4c88afc2a355bac90116
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc8f7a96124f04860b59d4e3793e13daa
11 schema:keywords Chinese Remainder Theorem
12 Remainder Theorem
13 advantages
14 analysis
15 auxiliary encryption
16 characteristics
17 comparison
18 complexity
19 computation complexity
20 effectiveness
21 encryption
22 experiments
23 gray image
24 image characteristics
25 image pixel values
26 image sharing
27 images
28 interval
29 lossless recovery
30 lossy recovery
31 low recovery computation complexity
32 mapping interval
33 method
34 paper
35 pixel values
36 polynomial-based secret image sharing
37 recovery
38 secret image sharing
39 sharing
40 theorem
41 threshold
42 values
43 schema:name Chinese Remainder Theorem-Based Secret Image Sharing for (k, n) Threshold
44 schema:pagination 433-440
45 schema:productId N00a2479a37884e35a1ceb3cdc2121eae
46 Nd7b6bd1b4fde488194c780f353e97abc
47 schema:publisher Na76841107fe3461692d0f5d8ae11f79a
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092481939
49 https://doi.org/10.1007/978-3-319-68542-7_36
50 schema:sdDatePublished 2022-12-01T06:48
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N31118cb90a7a4ff1ab55dec816a5c815
53 schema:url https://doi.org/10.1007/978-3-319-68542-7_36
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N00a2479a37884e35a1ceb3cdc2121eae schema:name doi
58 schema:value 10.1007/978-3-319-68542-7_36
59 rdf:type schema:PropertyValue
60 N0e82672af2ae45dda43fb3ddd0954fe0 schema:familyName Chao
61 schema:givenName Han-Chieh
62 rdf:type schema:Person
63 N12ddd9dee4934ce49075a1d744c39f8b rdf:first sg:person.011535473267.30
64 rdf:rest rdf:nil
65 N28a72cfcc1fe4658902ec106e62ed561 schema:familyName Sun
66 schema:givenName Xingming
67 rdf:type schema:Person
68 N31067870148b4a1c9ae3db39478f9bfb rdf:first N31608c76d55c4adb830e4240dd5419d6
69 rdf:rest Nb3450b245e5b4aafaed91008bf715e46
70 N31118cb90a7a4ff1ab55dec816a5c815 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N31608c76d55c4adb830e4240dd5419d6 schema:familyName You
73 schema:givenName Xingang
74 rdf:type schema:Person
75 N3cca06c2cff14df9b0122eaaa320ad76 schema:familyName Bertino
76 schema:givenName Elisa
77 rdf:type schema:Person
78 N40faedf6499f4c88afc2a355bac90116 rdf:first N28a72cfcc1fe4658902ec106e62ed561
79 rdf:rest Na6f5e7ea0563408cbc60f57371ea91cf
80 N7a649796625c4f3f9af062cad0030815 rdf:first sg:person.013517427271.32
81 rdf:rest Ne6699ff73945451ca66a8718ddfb479a
82 N7b203fe94be3470ca8ce81b1257fb25e rdf:first sg:person.015112370271.93
83 rdf:rest N7a649796625c4f3f9af062cad0030815
84 N8d25ddb9348e4a31b276674b3517fd30 rdf:first sg:person.010577640471.37
85 rdf:rest N12ddd9dee4934ce49075a1d744c39f8b
86 Na6f5e7ea0563408cbc60f57371ea91cf rdf:first N0e82672af2ae45dda43fb3ddd0954fe0
87 rdf:rest N31067870148b4a1c9ae3db39478f9bfb
88 Na76841107fe3461692d0f5d8ae11f79a schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nb3450b245e5b4aafaed91008bf715e46 rdf:first N3cca06c2cff14df9b0122eaaa320ad76
91 rdf:rest rdf:nil
92 Nc8f7a96124f04860b59d4e3793e13daa schema:isbn 978-3-319-68541-0
93 978-3-319-68542-7
94 schema:name Cloud Computing and Security
95 rdf:type schema:Book
96 Nd5bdaf6ad38145c0803e4a125376db67 rdf:first sg:person.010467364517.31
97 rdf:rest N7b203fe94be3470ca8ce81b1257fb25e
98 Nd7b6bd1b4fde488194c780f353e97abc schema:name dimensions_id
99 schema:value pub.1092481939
100 rdf:type schema:PropertyValue
101 Ne6699ff73945451ca66a8718ddfb479a rdf:first sg:person.012077574322.79
102 rdf:rest N8d25ddb9348e4a31b276674b3517fd30
103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
104 schema:name Information and Computing Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
107 schema:name Artificial Intelligence and Image Processing
108 rdf:type schema:DefinedTerm
109 sg:person.010467364517.31 schema:affiliation grid-institutes:None
110 schema:familyName Yan
111 schema:givenName Xuehu
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
113 rdf:type schema:Person
114 sg:person.010577640471.37 schema:affiliation grid-institutes:None
115 schema:familyName Ding
116 schema:givenName Wanmeng
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577640471.37
118 rdf:type schema:Person
119 sg:person.011535473267.30 schema:affiliation grid-institutes:None
120 schema:familyName Liu
121 schema:givenName Hanlin
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535473267.30
123 rdf:type schema:Person
124 sg:person.012077574322.79 schema:affiliation grid-institutes:None
125 schema:familyName Wan
126 schema:givenName Song
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077574322.79
128 rdf:type schema:Person
129 sg:person.013517427271.32 schema:affiliation grid-institutes:None
130 schema:familyName Liu
131 schema:givenName Lintao
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
133 rdf:type schema:Person
134 sg:person.015112370271.93 schema:affiliation grid-institutes:None
135 schema:familyName Lu
136 schema:givenName Yuliang
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
138 rdf:type schema:Person
139 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
140 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...